K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: 3x^3+2x^2-7x+a chia hêt cho 3x-1

=>3x^3-x^2+3x^2-x-6x+2+a-2 chia hết cho 3x-1

=>a-2=0

=>a=2

c: =>2x^2-6x+(a+6)x-3a-18+3a+19 chia x-3 dư 4

=>3a+19=4

=>3a=-15

=>a=-5

d: 2x^3-x^2+ax+b chiahêt cho x^2-1

=>2x^3-2x-x^2+1+(a+2)x+b-1 chia hết cho x^2-1

=>a+2=0 và b-1=0

=>a=-2 và b=1

28 tháng 12 2020

Ta có : (x3 + ax2 + 5x + 3) : (x2 + 2x + 3) = x + a - 2 dư (-2a + 6)x - (3a - 9) 

Để (x3 + ax2 + 5x + 3) \(⋮\) (x2 + 2x + 3)

=> (-2a + 6)x - (3a - 9) = 0\(\forall x\)

=> \(\hept{\begin{cases}-2a+6=0\\3a-9=0\end{cases}}\Rightarrow\hept{\begin{cases}a=3\\a=3\end{cases}}\Rightarrow a=3\)

Vậy a = 3 thì (x3 + ax2 + 5x + 3) \(⋮\) (x2 + 2x + 3)

28 tháng 12 2020

Đặt f(x) = x3 + ax2 + 5x + 3

       g(x) = x2 + 2x + 3

       h(x) là thương trong phép chia f(x) cho g(x)

Ta có : f(x) bậc 3, g(x) bậc 2 => h(x) bậc 1

=> h(x) có dạng x + b

Khi đó f(x) ⋮ g(x) <=> f(x) = g(x).h(x)

<=> x3 + ax2 + 5x + 3 = ( x2 + 2x + 3 )( x + b )

<=> x3 + ax2 + 5x + 3 = x3 + bx2 + 2x2 + 2bx + 3x + 3b

<=> x3 + ax2 + 5x + 3 = x3 + ( b + 2 )x2 + ( 2b + 3 )x + 3b

Đồng nhất hệ số ta có : \(\hept{\begin{cases}a=b+2\\2b+3=5\\3b=3\end{cases}}\Rightarrow\hept{\begin{cases}a=3\\b=1\end{cases}}\)

Vậy a = 3

17 tháng 8 2019

Mình sẽ làm cách chia nha còn bạn mún cách nào thì bảo mình làm lại 

a)

  x^3 +ax+b x^2+2x-2 x-2 x^3+2x^2-2x - -2x^2+(a+2)x+b -2x^2-4x+4 - (a+2+4)x+(b-4)

Để \(x^3+ax+b\)chia hết cho \(x^2+2x-2\)

\(\Leftrightarrow\hept{\begin{cases}a+2+4=0\\b-4=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=-6\\b=4\end{cases}}}\)

Vậy \(\hept{\begin{cases}a=-6\\b=4\end{cases}}\)để \(x^3+ax+b\)chia hết cho \(x^2+2x-2\)

17 tháng 8 2019

b) dùng phương pháp xét giá trị riêng

Đặt \(f\left(x\right)=ax^3+bx^2+5x-50\)

Ta có: \(f\left(x\right)\)chia hết cho\(x^2+3x-10\)

\(\Rightarrow f\left(x\right)=\left(x^2+3x-10\right).q\left(x\right)\)

\(\Rightarrow f\left(2\right)=\left(2^2+2.3-10\right).q\left(2\right)\)

                 \(=0\)

\(\Leftrightarrow a.2^3+b.2^2+5.2-50=0\)

\(\Leftrightarrow8a+4b-40=0\)

\(\Leftrightarrow4\left(2a+b-10\right)=0\)

\(\Leftrightarrow2a+b=10\left(1\right)\)

Lai có : \(f\left(-5\right)=\left[\left(-5\right)^2+3.\left(-5\right)-10\right].q\left(-5\right)\)

                             \(=0\)

\(\Leftrightarrow a.\left(-5\right)^3+b.\left(-5\right)^2+5.\left(-5\right)-50=0\)

\(\Leftrightarrow-125a+25b-25-50=0\)

\(\Leftrightarrow-125a+25b-75=0\)

\(\Leftrightarrow25\left(-5a+b-3\right)=0\)

\(\Leftrightarrow-5a+b=3\left(2\right)\)

Lấy (1) trừ (2) ta được: \(\left(2a+b\right)-\left(-5a+b\right)=10-3\)

                                 \(\Leftrightarrow7a=7\)

                                 \(\Leftrightarrow a=1\)

Thay a=1 vào (1 ) ta được: b=8

Vậy a=1 và b=8

16 tháng 1 2016

Tick

3: \(\Leftrightarrow a-15=0\)

hay a=15

25 tháng 10 2016

dài thế