K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2018

A O B C

Xét \(\Delta\)ACB có AB là đường kính đường tròn ngoại tuyến

=>\(\Delta\)ACB vuông tại C ( đ/lý đường tròn )

=>\(\widehat{ACB}=90^o\)(t/c \(\Delta\)vuông)

Có OA=OC=R

mà AC=R(gt)

=>OA=OC=AC

=>\(\Delta\)AOC đều (đ/n \(\Delta\)đều)

=>\(\widehat{CAO}=60^o\)(t/c \(\Delta\)đều)

=>\(\widehat{CAB}=60^o\)(O\(\in\)AB)

Xét \(\Delta\)ACB vuông tại C có 

\(\widehat{CAB}+\widehat{CBA}=90^o\)(2 góc phụ nhau trong \(\Delta\)vuông )

=>60o+\(\widehat{CBA}\)=90o(\(\widehat{CAB}=60^o\)

=>\(\widehat{CBA}\)=30o

a) Ta có: ΔABC cân tại A

mà AH là đường cao ứng với cạnh BC

nên AH là đường trung tuyến ứng với cạnh BC

Ta có: AB=AC

nên A nằm trên đường trung trực của BC\(\left(1\right)\)

Ta có: OB=OC

nên O nằm trên đường trung trực của BC\(\left(2\right)\)

Ta có: HB=HC

nên H nằm trên đường trung trực của BC(3)

Từ (1), \(\left(2\right),\left(3\right)\) suy ra A,O,H thẳng hàng

\(\Leftrightarrow A,O,H,D\) thẳng hàng

hay AD là đường kính của \(\left(O\right)\)

5 tháng 12 2017

Đáp án C

Tam giác ABC có góc A là góc tù nên Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Mà cạnh đối diện với góc A là cạnh BC .

Áp dụng định lí: trong 1 tam giác cạnh đối diện với góc lớn hơn thì lớn hơn ta được:

BC > AC và BC > AB

Vậy tam giác ABC có độ dài cạnh BC là lớn nhất nên dây BC gần tâm nhất.

Chưa thể kết luận dây nào xa tâm nhất.

góc AEC=góc ADC=90 độ

=>AEDC nội tiếp

N là trung điểm của AC và R=AC/2

12 tháng 12 2023

a: Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔACB vuông tại C

Xét ΔCAB vuông tại C có \(sinCAB=\dfrac{CB}{AB}\)

=>\(\dfrac{CB}{2R}=sin30=\dfrac{1}{2}\)

=>CB=R

Xét ΔCAB vuông tại C có \(CB^2+CA^2=AB^2\)

=>\(CA^2+R^2=\left(2R\right)^2=4R^2\)

=>\(CA^2=3R^2\)

=>\(CA=R\sqrt{3}\)

Chu vi tam giác ABC là:

\(C_{ABC}=CA+CB+AB=R+2R+R\sqrt{3}=R\left(3+\sqrt{3}\right)\)

b: Xét ΔCHA vuông tại H có \(sinCAH=\dfrac{CH}{CA}\)

=>\(\dfrac{CH}{R\sqrt{3}}=sin30=\dfrac{1}{2}\)

=>\(CH=\dfrac{R\sqrt{3}}{2}\)

Ta có: DA=2CH

=>\(DA=2\cdot\dfrac{R\sqrt{3}}{2}=R\sqrt{3}\)

Ta có: \(\widehat{DAC}+\widehat{CAB}=90^0\)
=>\(\widehat{DAC}=90^0-\widehat{CAB}=90^0-30^0=60^0\)

Xét ΔADC có \(AD=AC\left(=R\sqrt{3}\right)\) và \(\widehat{DAC}=60^0\)

nên ΔADC đều

=>\(\widehat{D}=60^0\)

Xét ΔOAC có OA=OC

nên ΔOAC cân tại O

=>\(\widehat{AOC}=180^0-2\cdot\widehat{OAC}=180^0-2\cdot30^0=120^0\)

c: Xét tứ giác DAOC có \(\widehat{DAO}+\widehat{DCO}+\widehat{ADC}+\widehat{AOC}=360^0\)

=>\(\widehat{DCO}+90^0+120^0+60^0=360^0\)

=>\(\widehat{DCO}=90^0\)

=>CD là tiếp tuyến của (O)

24 tháng 5 2015

Câu b.
Ta có tam giác EOH cân tại O
=> góc OEH=goc OHE
=> góc OHE= góc EHB (vì AHB cân Có HE là đường cao đồng thời là đường phân giác )
xét tứ giác EHDB nt
có gócEHB=gócEDB (cùng chắn EB)
=> góc OEH=gócEDB
Xét ttam giác EHD cân tại H ( H là  trực tâm trong tam giác ABC cân)
có góc HED=góc HDE 
mà góc HDE+gocEDB=90độ
=> góc HED+gocOEH=90độ
<=>OE vuông góc ED
câu c.
Xét tam giác BDA vuong tại D
AB2=AD2+DB2 (pytago)
AD2=AB2-BD2
AD2=169-25
AD2=144
AD=12
Xet tam giác OED vuông tại E có:
tam giác EHD cân => tam giác HEO cân  ( trong tam giác vuông đường trung tuyến là một đoạn thẳng nối từ đỉnh của tam giác tới trung điểm của cạnh đối diện, sẽ chia ra 2 cạch = nhau )
Xét (O) có
O là trung điểm AH
=>OA=OH
Ta lại có H là trung điểm OD
do đó OA=OH=HD
mà AD=12
=>OA=OH=HD=12/3
=>OA=4cm

22 tháng 10 2017

ko có câu a à bn