K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác BDGC có

BD//GC

BC//GD

=>BDGC là hình bình hành

=>BD=GC

AD//GC

=>AD/CG=DE/EG

=>AD*EG=DE*CG

=>AD*EG=DE*DB

b: DE//CB

=>BD/BA=CE/CA
AB//CG

=>CG/AB=CH/HA

=>BD/BA=CH/HA

=>CE/CA=CH/HA=HE/CH

=>HC^2=HE*HA

a: Xét ΔEDA và ΔEGC có

\(\widehat{EDA}=\widehat{EGC}\)(hai góc so le trong, AD//CG)

\(\widehat{DEA}=\widehat{GEC}\)(hai góc đối đỉnh)

Do đó: ΔEDA~ΔEGC

=>\(\dfrac{ED}{EG}=\dfrac{EA}{EC}\left(1\right)\)

Xét ΔABC có DE//BC

nên \(\dfrac{EA}{EC}=\dfrac{AD}{DB}\left(2\right)\)

Từ (1) và (2) suy ra \(\dfrac{ED}{EG}=\dfrac{AD}{DB}\)

=>\(ED\cdot DB=EG\cdot AD\)

b: Xét ΔHEG và ΔHCB có

\(\widehat{HEG}=\widehat{HCB}\)(hai góc so le trong, EG//BC)

\(\widehat{EHG}=\widehat{CHB}\)(hai góc đối đỉnh)

Do đó: ΔHEG~ΔHCB

=>\(\dfrac{HE}{HC}=\dfrac{EG}{CB}\)(3)

Xét ΔHGC và ΔHBA có

\(\widehat{HGC}=\widehat{HBA}\)(hai góc so le trong, AB//CG)

\(\widehat{GHC}=\widehat{BHA}\)(hai góc đối đỉnh)

Do đó: ΔHGC~ΔHBA

=>\(\dfrac{HC}{HA}=\dfrac{GC}{BA}\left(4\right)\)

Xét tứ giác BDGC có

BD//GC

DG//BC

Do đó:BDGC là hình bình hành

=>\(\widehat{DGC}=\widehat{DBC}\)

Xét ΔGEC và ΔBCA có

\(\widehat{GEC}=\widehat{BCA}\)(hai góc so le trong, EG//BC)

\(\widehat{EGC}=\widehat{CBA}\)(cmt)

Do đó: ΔGEC~ΔBCA

=>\(\dfrac{EG}{BC}=\dfrac{GC}{BA}\left(5\right)\)

Từ (3),(4),(5) suy ra \(\dfrac{HC}{HA}=\dfrac{HE}{HC}\)

=>\(HC^2=HE\cdot HA\)

a: Xét (O) có

ΔBEC nội tiếp

BC là đường kính

Do đó: ΔBEC vuông tại E

=>CE\(\perp\)AB tại E

Xét (O) có

ΔBDC nội tiếp

BC là đường kính

Do đó: ΔBDC vuông tại D

=>BD\(\perp\)AC tại D

Xét ΔABC có

BD,CE là các đường cao

BD cắt CE tại H

Do đó: H là trực tâm của ΔABC

=>AH\(\perp\)BC tại I

b: Ta có: \(\widehat{AMO}=\widehat{ANO}=\widehat{AIO}\)

=>A,M,I,O,N cùng thuộc đường tròn đường kính AO

Gọi I là trung điểm của AO

=>A,M,I,O,N cùng thuộc (I)

Xét (O) có

AM,AN là các tiếp tuyến

Do đó: OA là phân giác của góc MON

=>\(\widehat{MOA}=\widehat{NOA}\)

Xét (I) có

\(\widehat{MOA}\) là góc nội tiếp chắn cung MA

\(\widehat{NOA}\) là góc nội tiếp chắn cung NA

\(\widehat{MOA}=\widehat{NOA}\)

Do đó: \(sđ\stackrel\frown{MA}=sđ\stackrel\frown{NA}\)

Xét (I) có

\(\widehat{MIA}\) là góc nội tiếp chắn cung MA

\(\widehat{NIA}\) là góc nội tiếp chắn cung NA

\(sđ\stackrel\frown{MA}=sđ\stackrel\frown{NA}\left(cmt\right)\)

Do đó: \(\widehat{MIA}=\widehat{NIA}\)

=>IA là phân giác của góc MIN

a: XétΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó:ΔBAD=ΔBED

Xét ΔADF vuông tại A và ΔEDC vuông tại E có

DA=DE

\(\widehat{ADF}=\widehat{EDC}\)

Do đó: ΔADF=ΔEDC

Suy ra: DF=DC

hay ΔDFC cân tại D

b: Ta có: DE=DA

mà DA<DF

nên DE<DF