Tìm x biết :
a, \(\frac{27}{x+1}=\frac{x+1}{3}\)
b, \(\left(x-\frac{2}{9}\right)^3=\left(\frac{2}{3}\right)^6\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left|x+\frac{1}{3}\right|+\frac{4}{5}=\left|-3,2+\frac{2}{5}\right|+\left(27-\frac{3}{5}\right)\left(27-\frac{3^2}{6}\right)...\left(27-\frac{3^5}{9}\right)...\left(27-\frac{3^{2010}}{2014}\right)\)
\(\Leftrightarrow\left|x+\frac{1}{3}\right|+\frac{4}{5}=\frac{14}{5}+\left(27-\frac{3^2}{6}\right)\left(27-\frac{3^3}{7}\right)...\left(27-27\right)...\left(27-\frac{3^{2010}}{2014}\right)\)
\(\Leftrightarrow\left|x+\frac{1}{3}\right|+\frac{4}{5}=\frac{14}{5}\)
\(\Leftrightarrow\left|x+\frac{1}{3}\right|=2\)
\(\Rightarrow\hept{\begin{cases}x+\frac{1}{3}=2\\x+\frac{1}{3}=-2\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{5}{3}\\x=-\frac{7}{3}\end{cases}}}\)
bạn ơi, có một chỗ chưa chuẩn .bạn kiểm tra lại giú mình. chỗ vế trái bạn thiếu \(\left(27-\frac{3}{5}\right)\). bạn bổ sung vào cho đúng nhé. dù sao vẫn cảm ơn bạn.
b, \(\frac{1}{x\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+9\right)}=\frac{1}{3}\left(27-\frac{1}{x+9}\right)\) (ĐKXĐ: x \(\ne\) 0; x \(\ne\) -3; x \(\ne\) -6; x \(\ne\) -9)
\(\Leftrightarrow\) \(\frac{1}{3}\)(\(\frac{1}{x}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+9}\)) = \(\frac{1}{3}\)(27 - \(\frac{1}{x+9}\))
\(\Leftrightarrow\) \(\frac{1}{3}\)(\(\frac{1}{x}-\frac{1}{x+9}\)) = \(\frac{1}{3}\)(27 - \(\frac{1}{x+9}\))
\(\Leftrightarrow\) \(\frac{1}{3}\)(\(\frac{1}{x}-\frac{1}{x+9}\)) - \(\frac{1}{3}\)(27 - \(\frac{1}{x+9}\))
\(\Leftrightarrow\) \(\frac{1}{3}\)(\(\frac{1}{x}-\frac{1}{x+9}-27+\frac{1}{x+9}\)) = 0
\(\Leftrightarrow\) \(\frac{1}{3}\)(\(\frac{1}{x}-27\)) = 0
\(\Leftrightarrow\) \(\frac{1}{x}-27\) = 0
\(\Leftrightarrow\) x = \(\frac{1}{27}\) (TM ĐKXĐ)
Vậy S = {\(\frac{1}{27}\)}
Chúc bn học tốt!!
a, \(\frac{5x-3}{50x^2-2}+\frac{5x-9}{12x-60x^2}+\frac{1}{12x}=\frac{8x-5}{80x^2+16x}\) (ĐKXĐ: x \(\ne\) \(\pm\)\(\frac{1}{5}\); x \(\ne\) 0)
\(\Leftrightarrow\) \(\frac{5x-3}{2\left(5x-1\right)\left(5x+1\right)}+\frac{-5x+9}{12x\left(5x-1\right)}+\frac{1}{12x}=\frac{8x-5}{16x\left(5x+1\right)}\)
\(\Leftrightarrow\) \(\frac{24x\left(5x-3\right)\left(5x+1\right)}{48x\left(5x-1\right)\left(5x+1\right)}+\frac{-4\left(5x+1\right)\left(5x-9\right)}{48x\left(5-1x\right)\left(5x+1\right)}+\frac{4\left(5x-1\right)\left(5x+1\right)}{48x\left(5x-1\right)\left(5x+1\right)}=\frac{3\left(8x-5\right)\left(5x-1\right)}{48x\left(5x-1\right)\left(5x+1\right)}\)
\(\Leftrightarrow\) 24x(5x - 3) - 4(5x + 1)(5x - 9) + 4(5x - 1)(5x + 1) = 3(8x - 5)(5x - 1)
\(\Leftrightarrow\) 120x2 - 72x - 100x2 + 160x + 36 + 100x2 - 4 = 120x2 - 99x + 15
\(\Leftrightarrow\) 120x2 - 120x2 - 100x2 + 100x2 - 72x + 160x + 99x = 15 - 36 + 4
\(\Leftrightarrow\) 187x = -17
\(\Leftrightarrow\) x = \(\frac{-1}{11}\) (TM ĐKXĐ)
Vậy S = {\(\frac{-1}{11}\)}
Chúc bn học tốt!! (Đã được kiểm chứng không sai :)
a)\(\left(-3\right)^{x+3}=-\frac{1}{27}\)
\(\left(-3\right)^{x+3}=\left(-\frac{1}{3}\right)^3\)
\(\left(-3\right)^{x+3}=\left(-\frac{3^0}{3^1}\right)^3\)
\(\left(-3\right)^{x+3}=\left(-3^{-1}\right)^3\)
\(\left(-3\right)^{x+3}=\left(-3\right)^{-3}\)
\(\Rightarrow x+3=-3\)
\(\Rightarrow x=-6\)
b)\(\left(-6\right)^{2x+2}=\frac{1}{36}\)
\(\left(-6\right)^{2x+2}=\left(-\frac{1}{6}\right)^2\)
\(\left(-6\right)^{2x+2}=\left(-\frac{6^0}{6^1}\right)^2\)
\(\left(-6\right)^{2x+2}=\left(-6^{-1}\right)^2\)
\(\left(-6\right)^{2x+2}=\left(-6\right)^{-2}\)
\(\Rightarrow2x+2=-2\)
\(\Rightarrow2x=-4\)
\(\Rightarrow x=-2\)
c)\(\left(-3\right)^{x+5}=\frac{1}{81}\)
\(\left(-3\right)^{x+5}=\left(-\frac{1}{3}\right)^4\)
\(\left(-3\right)^{x+5}=\left(-\frac{3^0}{3^1}\right)^4\)
\(\left(-3\right)^{x+5}=\left(-3^{-1}\right)^4\)
\(\left(-3\right)^{x+5}=\left(-3\right)^{-4}\)
\(\Rightarrow x+5=-4\)
\(\Rightarrow x=-9\)
d)\(\left(\frac{1}{9}\right)^x=\left(\frac{1}{27}\right)^6\)
\(\left[\left(\frac{1}{3}\right)^2\right]^x=\left[\left(\frac{1}{3}\right)^3\right]^6\)
\(\left(\frac{1}{3}\right)^{2x}=\left(\frac{1}{3}\right)^{18}\)
\(\Rightarrow2x=18\)
\(\Rightarrow x=9\)
e)\(\left(\frac{4}{9}\right)^x=\left(\frac{8}{27}\right)^6\)
\(\left[\left(\frac{2}{3}\right)^2\right]^x=\left[\left(\frac{2}{3}\right)^3\right]^6\)
\(\left(\frac{2}{3}\right)^{2x}=\left(\frac{2}{3}\right)^{18}\)
\(\Rightarrow2x=18\)
\(\Rightarrow x=9\)
\(\left(x+\frac{1}{5}\right)^2+\frac{17}{25}=\frac{26}{25}\\ \left(x+\frac{1}{5}\right)^2=\frac{26}{25}-\frac{17}{25}\\ \left(x+\frac{1}{5}\right)^2=\frac{9}{25}\\ \left|\left(x+\frac{1}{5}\right)\right|=\frac{3}{5}\)
TH1: \(x=\frac{3}{5}-\frac{1}{5}\\ x=\frac{2}{5}\)
TH2: \(\left|\left(x+\frac{1}{5}\right)\right|=-\frac{3}{5}\\ x=-\frac{3}{5}-\frac{1}{5}\\ x=-\frac{4}{5}\)
\(a,\left(x+\frac{1}{5}\right)^2+\frac{17}{25}=\frac{26}{25}\)
\(\Rightarrow\left(x+\frac{1}{5}\right)^2=\frac{9}{25}\)
\(\Rightarrow\left(x+\frac{1}{5}\right)^2=\left(\frac{3}{5}\right)^2\)
\(\Rightarrow x+\frac{1}{5}=\frac{3}{5}\)
\(\Rightarrow x=\frac{2}{5}\)
\(b,-1\frac{5}{27}-\left(3x-\frac{7}{9}\right)^3=-\frac{24}{27}\)
\(\Rightarrow-\frac{32}{27}-\left(3x-\frac{7}{9}\right)^3=-\frac{24}{27}\)
\(\Rightarrow\left(3x-\frac{7}{9}\right)^3=-\frac{32}{27}+\frac{24}{27}\)
\(\Rightarrow\left(3x-\frac{7}{9}\right)^3=-\frac{8}{27}\)
\(\Rightarrow\left(3x-\frac{7}{9}\right)^3=\left(-\frac{2}{3}\right)^3\)
\(\Rightarrow3x-\frac{7}{9}=-\frac{2}{3}\)
\(\Rightarrow3x=-\frac{2}{3}+\frac{7}{9}\)
\(\Rightarrow3x=\frac{1}{9}\)
\(\Rightarrow x=\frac{1}{27}\)
\(c,\left(x+\frac{1}{2}\right)\left(\frac{2}{3}-2x\right)=0\)
\(\Rightarrow\) \(\left[\begin{array}{nghiempt}x+\frac{1}{2}=0\\\frac{2}{3}-2x=0\end{array}\right.\) \(\Rightarrow\) \(\left[\begin{array}{nghiempt}x=-\frac{1}{2}\\2x=\frac{2}{3}\end{array}\right.\) \(\Rightarrow\) \(\left[\begin{array}{nghiempt}x=-\frac{1}{2}\\x=\frac{1}{3}\end{array}\right.\)
a)
\(\begin{array}{l}\frac{2}{9}:x + \frac{5}{6} = 0,5\\\frac{2}{9}:x = \frac{1}{2} - \frac{5}{6}\\\frac{2}{9}:x = \frac{3}{6} - \frac{5}{6}\\\frac{2}{9}:x = \frac{{ - 2}}{6}\\x = \frac{2}{9}:\frac{{ - 2}}{6}\\x = \frac{2}{9}.\frac{{ - 6}}{2}\\x = \frac{{ - 2}}{3}\end{array}\)
Vậy \(x = \frac{{ - 2}}{3}\).
b)
\(\begin{array}{l}\frac{3}{4} - \left( {x - \frac{2}{3}} \right) = 1\frac{1}{3}\\x - \frac{2}{3} = \frac{3}{4} - 1\frac{1}{3}\\x - \frac{2}{3} = \frac{3}{4} - \frac{4}{3}\\x - \frac{2}{3} = \frac{9}{{12}} - \frac{{16}}{{12}}\\x - \frac{2}{3} = \frac{{ - 7}}{{12}}\\x = \frac{{ - 7}}{{12}} + \frac{2}{3}\\x = \frac{{ - 7}}{{12}} + \frac{8}{{12}}\\x = \frac{1}{12}\end{array}\)
Vậy\(x = \frac{1}{12}\).
c)
\(\begin{array}{l}1\frac{1}{4}:\left( {x - \frac{2}{3}} \right) = 0,75\\\frac{5}{4}:\left( {x - \frac{2}{3}} \right) = \frac{3}{4}\\x - \frac{2}{3} = \frac{5}{4}:\frac{3}{4}\\x - \frac{2}{3} = \frac{5}{4}.\frac{4}{3}\\x - \frac{2}{3} = \frac{5}{3}\\x = \frac{5}{3} + \frac{2}{3}\\x = \frac{7}{3}\end{array}\)
Vậy \(x = \frac{7}{3}\).
d)
\(\begin{array}{l}\left( { - \frac{5}{6}x + \frac{5}{4}} \right):\frac{3}{2} = \frac{4}{3}\\ - \frac{5}{6}x + \frac{5}{4} = \frac{4}{3}.\frac{3}{2}\\ - \frac{5}{6}x + \frac{5}{4} = 2\\ - \frac{5}{6}x = 2 - \frac{5}{4}\\ - \frac{5}{6}x = \frac{8}{4} - \frac{5}{4}\\ - \frac{5}{6}x = \frac{3}{4}\\x = \frac{3}{4}:\left( { - \frac{5}{6}} \right)\\x = \frac{3}{4}.\frac{{ - 6}}{5}\\x = \frac{{ - 9}}{{10}}\end{array}\)
Vậy \(x = \frac{{ - 9}}{{10}}\).
a) \(\left(\frac{4}{9}\right)^x=\left(\frac{8}{27}\right)^6\)
\(\Leftrightarrow\left(\frac{2}{3}\right)^{2x}=\left(\frac{2}{3}\right)^{18}\)
\(\Leftrightarrow2x=18\)
\(\Leftrightarrow x=9\)
b) \(\left(\frac{1}{9}\right)^x=\left(\frac{1}{27}\right)^{22}\)
\(\Leftrightarrow\left(\frac{1}{9}\right)^x=\left(\frac{1}{3}\right)^{66}\)
\(\Leftrightarrow x=66\)
\(a,\frac{27}{x+1}=\frac{x+1}{3}\)
\(\Leftrightarrow27.3=\left(x+1\right)\left(x+1\right)\)
\(\Leftrightarrow81=\left(x+1\right)^2\)
\(\Rightarrow\orbr{\begin{cases}\left(x+1\right)^2=9^2\\\left(x+1\right)^2=\left(-9\right)^2\end{cases}\Rightarrow\orbr{\begin{cases}x+1=9\\x+1=-9\end{cases}}\Rightarrow\orbr{\begin{cases}x=8\\x=-10\end{cases}}}\)
Vậy \(x\in\left\{8;-10\right\}\)
a)\(\frac{27}{x+1}=\frac{x+1}{3}\)
Ta có : 27 . 3 = (x + 1)(x + 1)
=> 81 = (x + 1)2
=> 92 = (x + 1)2
=> \(\orbr{\begin{cases}x+1=9\\x+1=-9\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=8\\x=-10\end{cases}}\)