Cho a>2 và b>2 , chứng minh rằng ab > a+b
Các bạn giúp mình với . thứ 2 mình thi rùi .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2 ) đề sai rùi bạn ơi ! Mk giải theo đề đúng nka !!
CMR : nếu \(a+b>1\)thì \(a^2+b^2>\frac{1}{2}\)
Ta có : \(a+b>1>0\) ( 1 )
Bình phương hai vế ta được :
\(\left(a+b\right)^2>1\)\(\Leftrightarrow a^2+2ab+b^2>1\) ( 2 )
Mặt khác :
\(\left(a-b\right)^2\ge0\)\(\Leftrightarrow a^2-2ab+b^2\ge0\) ( 3 )
Cộng từng vế của (2) và (3) , ta được:
\(2a^2+2b^2>1\)\(\Leftrightarrow2\left(a^2+b^2\right)>1\)\(\Leftrightarrow a^2+b^2>\frac{1}{2}\left(dpcm\right)\)
tk cko mk nka vì công ngồi đánh máy tình !!!
Biết \(a>b\)và \(b>2\)\(\Leftrightarrow a>2\)
Ta có : \(a>2\)
\(\Leftrightarrow-3a< -6\)( Nhân 2 vế với -3 bất đẳng thức đổi chiều )
\(\Leftrightarrow-3a+6< 0\)(Cộng 2 vế với 6)
\(\Leftrightarrowđpcm\)
tk nka !1
Vì a > 2 , b > 2 nên a ; b có dạng :
a = 2 + m ( m \(\in\)N )
b = 2 + n ( n \(\in\)N )
Khi đó a + b = 4 + ( m + n ) ( 1 )
a . b = ( 2 + m ) . ( 2 + n )
= 2 . ( 2 + n ) + m . ( 2 + n )
= 2 . 2 + 2 . n + m . 2 + m . n
= 4 + 2n + 2m + mn
= 4 + n + n + m + m + mn
= 4 + ( m + n ) + ( m + n + mn ) ( 2 )
Từ ( 1 ) và ( 2 ) => a + b < ab Vì 4 + ( m + n ) < 4 + ( m + n ) + ( m + n + mn ) và m + n + mn > 0
=> đpcm
Bài 2:
Ta chứng minh \(\left|a+b\right|\le\left|a\right|+\left|b\right|\) (*) :
Bình phương 2 vế của (*) ta có:
\(\left(\left|a+b\right|\right)^2\le\left(\left|a\right|+\left|b\right|\right)^2\)
\(\Leftrightarrow a^2+b^2+2ab\le a^2+b^2+2\left|ab\right|\)
\(\Leftrightarrow ab\le\left|ab\right|\) (luôn đúng)
Áp dụng (*) vào bài toán ta có:
\(\left|a-c\right|\le\left|a-b+b-c\right|=\left|a-c\right|\) (luôn đúng)
\(\left(a+b\right)\left(\frac{a}{b}+\frac{b}{a}\right)=\left(a+b\right)\left(\frac{a+b}{ab}\right)=\frac{\left(a+b\right)^2}{ab}=\frac{a^2+b^2+2ab}{ab}>=\frac{4ab}{ab}=4\)
Ta có : \(\hept{\begin{cases}a>2\\b>0\end{cases}}\) (gt)
\(\Rightarrow ab>2b\) (1)
và \(\hept{\begin{cases}b>2\\a>0\end{cases}}\)(gt)
\(\Rightarrow ab>2a\) (2)
Từ (1) và (2) . cộng vế với vế
\(\hept{\begin{cases}ab>2b\\ab>2a\end{cases}}\)
\(\Rightarrow2ab>2\left(a+b\right)\)
Từ (1) và (2) chia 2 vế cho 2
\(\Rightarrow ab>a+b\) (đpcm)