K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2020

Em kiểm tra lại đề bài . Gọi P, Q là hình chiếu của K trên BC và gì nữa vậy?

13 tháng 7 2020

Gọi N là giao điểm của PQ và AH, gọi M là giao điểm của AH với (O). Khi đó dễ thấy tam giác PHK cân. Do AH//KP nên tứ giác KPMN là hình thang.

Lại có BPKQ nội tiếp nên suy ra được \(\widehat{QBK}=\widehat{ABK}=\widehat{ AMK}=\widehat{QPK}\)nên tứ giác KPMN nội tiếp. Do đó KPMN là hình thang cân. Do đó \(\widehat{PMH}=\widehat{PHM}=\widehat{KNM}\)nên KN//HP.

Do vậy tứ giác HPKN là hình bình hành. Từ đó ta có điều phải chứng minh.

18 tháng 5 2021
Bài này sử dụng tứ giác nội tiếp và sử dụng góc bẹt

Bài tập Tất cả

Bài tập Tất cả

Bài tập Tất cả

Bài tập Tất cả

mik ko bt lm bài này bn à . mik thông minh lắm mấy bn mới ngu ấy

góc MKC=góc MIC=90 độ

=>MCKI nội tiếp

=>góc MIK+góc MCK=180 độ

góc MIB+góc MHB=180 độ

=>MIBH nội tiếp

=>góc MIH=góc MBH

góc MIH+góc MIK

=180 độ-góc MCK+góc MBH

=180 độ

=>H,I,K thẳng hàng

21 tháng 11 2019

Ta có  NHC = ABC (cùng phụ với HCB)                         (1)

Vì ABDC là tứ giác nội tiếp nên ABC = ADC                  (2)

Vì D và E đối xứng nhau qua AC nên AC là trung trực DE suy ra

∆ADC = ∆AEC (c.c.c) => ADC = AEC                           (3)

Tương tự ta có AEK = ADK

Từ (1), (2), (3) suy ra NHC = AEC => AEC + AHC = NHC + AHC = 180o

Suy ra AHCE là tứ giác nội tiếp => ACH = AEK = ADK (đpcm)

16 tháng 10 2019

A B C S O M H E F T K D P L I

Vẽ đường tròn ngoại tiếp (O) của \(\Delta\)ABC. Tiếp tuyến tại B và C của (O) cắt nhau ở T.

Gọi HM cắt đường tròn (O) tại hai điểm K và D (K thuộc cung lớn BC), AH cắt (O) và (AEF) tại L và I (khác A).

Dễ chứng minh AD là đường kính của (O) và  ^AKP = 900, suy ra K thuộc đường tròn (AEF)

Từ đó \(\Delta\)EKF ~ \(\Delta\)CKB (g.g). Dễ thấy ^IFE = ^IAE = ^LBC; ^IEF = ^IAF = ^LCB suy ra \(\Delta\)EIF ~ \(\Delta\)CLB

Do vậy \(\frac{KF}{KE}.\frac{IE}{IF}=\frac{KB}{KC}.\frac{LC}{LB}=\frac{KB}{KC}.\frac{DB}{DC}=\frac{KB}{KC}.\frac{DB}{BM}.\frac{CM}{DC}=\frac{KB}{KC}.\frac{KC}{KM}.\frac{KM}{KB}=1\)

Suy ra 2 tứ giác KFIE và KBLC điều hòa, dẫn đến K,I,S thẳng hàng và K,L,T thẳng hàng

Theo tính đồng dạng thì \(\Delta\)KIF ~ \(\Delta\)KLB và \(\Delta\)KFS ~ \(\Delta\)KBT kéo theo \(\Delta\)IKL ~ \(\Delta\)SKT (~\(\Delta\)FKB)

Vậy ST // IL, mà IL vuông góc với BC, T thuộc trung trực của BC nên S thuộc trung trực của BC hay SB = SC (đpcm).

14 tháng 2 2022

làm sao suy ra được K thuộc đường tròn (AEF) vậy bạn?