Tìm cực trị của hàm số
Y=x3-6x2+12x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn D
Hàm số có 2 điểm cực trị x1; x2 ⇔ Δ' > 0 ⇔ 4 - (m + 2) > 0 ⇔ m < 2
Chia y cho y’ ta được :
Suy ra : Phương trình đường thẳng đi qua hai điểm cực trị là: y = (m - 2)(2x + 1).
Điểm cực trị tương ứng : A(x1;(m - 2)(2x1 + 1)) và B(x2;(m - 2)(2x2 + 1))
Có:
Chọn D
Hàm số có 2 điểm cực trị x 1 , x 2
Chia y cho y’ ta được :
Điểm cực trị tương ứng :
Với x 1 + x 2 = 4 x 1 x 2 = m + 2 nên y 1 y 2 = ( m - 2 ) 2 ( 4 m + 17 )
Hai cực trị cùng dấu ⇔ y 1 y 2 > 0
Kết hợp đk : - 17 4 < m < 2
Đáp án C
Ta có y ' = - 3 x 2 + 12 x + 15 ; y ' = 0 ⇔ [ x = - 1 x = 5 ⇒ cực tiểu là y(-1) = 2
Đáp án D.
Ta có y ' = 6 x 2 + 6 1 - m x + 6 m - 2 .
Hàm số có điểm cực trị x 0 = 2 ⇒ 6 . 2 2 + 6 . 1 - m . 2 + 6 . m - 2 = 0 ⇔ m = 4 .
Với m = 4 hàm số có thêm một điểm cực trị x 1 = m - 2 2 = 1 .
Hàm số đã cho trở thành y = 2 x 3 - 9 x 2 + 12 x + n .
Hàm số này có hai cực trị là y 0 = y 2 = n + 4 và y 1 = y 1 = n + 5 .
Hàm số có hai cực trị đều dương ⇔ n + 4 > 0 n + 5 > 0 ⇔ n > - 4
Vậy giá trị nguyên nhỏ nhất của n là ‒3. Do đó giá trị nhỏ nhất của m + n (với m , n nguyên) là 4 + - 3 = 1 . Chọn đáp án D.
Chọn đáp án A
Hàm số đã cho có 5 điểm cực trị khi hàm số y = x 3 - 6 x 2 + m x - 1
có hai điểm cực x 1 , x 2 thỏa mãn x 1 > 0 , x 2 > 0
⇔ Phương trình y ' = 3 x 2 - 12 x + m = 0 có hai nghiệm dương phân biệt
Khi đó
Do m ∈ 1 ; 2 ; 3 ; . . ; 11
Vậy có 11 giá trị m nguyên thỏa mãn yêu cầu bài toán
Đáp án A
y = x 3 − 6 x 2 + m x − 1 ( 1) là hàm chẵn nên đồ thị hàm số đối xứng với nhau qua trục tung.
Đặt x = t , t ≥ 0 . Khi đó :
y = t 3 − 6 t 2 + m t − 1 (*)
Để hàm số (1) có 5 cực trị <=> hàm số (*) có 2 cực trị dương
⇔ y ' = 0 có 2 nghiệm dương phân biệt
⇔ 3 t 2 − 12 t + m = 0 có 2 nghiệm dương phân biết
⇔ Δ ' = 36 − 3 m > 0 12 2.3 > 0 3. m > 0 ⇔ 0 < m < 12
+ Ta có đạo hàm y’ = 3x2- 12x+ 3( m+ 2)
Phương trình y’ = 0 khi 3x2- 12x+ 3( m+ 2) = 0
+ Hàm số có 2 điểm cực trị x1; x2 ⇔ Δ’ > 0 ⇔ m < 2
+ Chia y cho y’ ta được :y= 1/3.y’( x-2) + (m-2) (2x+ 1)
Tọa độ 2 điểm cực trị tương ứng : A( x1 ; ( m-2) ( 2x1+ 1) ) và B( x2 ; ( m-2) ( 2x2+ 1) )
+ ta có ; y1.y2= ( m-2) 2( 4x1x2+ 2( x1+ x2) + 1)
Với nên: y1y2= ( m-2) 2( 4m+ 17)
Hai cực trị cùng dấu khi và chỉ khi y1.y2> 0 hay ( m-2) 2( 4m+ 17) > 0
⇔ m > - 17 4 m ≠ 2
Kết hợp điều kiện ta được : -17/4< m< 2; mà m nguyên nên m= -4; -3; ...0; 1
Có tất cả 6 giá trị nguyên của m thỏa mãn đầu bài.
Chọn C.
ta có : \(y'=\left(x^3-6x^2+12x\right)=3x^2-12x+12\)
\(\Rightarrow y'=0\Leftrightarrow3x^2-12x+12\Leftrightarrow x=2\)
vậy cực trị của hàm số \(y=x^3-6x^2+12x\) là \(2\)