K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2018

X = 0,5906672909

Hk tốt

23 tháng 9 2018

\(3x^2+6x-3=\sqrt{\frac{x+7}{3}}\)

\(\Leftrightarrow\left(3x^2+6x-3\right)^2=\left(\sqrt{\frac{x+7}{3}}\right)^2\)

\(\Leftrightarrow9x^4+36x^3+18x^2-36x+9=\frac{x+7}{3}\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{\sqrt{69}+7}{6}\\x=\frac{\sqrt{73}-5}{6}\end{cases}}\)

1 tháng 2 2018

Đặt : \(\sqrt{\frac{x+7}{3}}\)= t + 1 

=> x+7/3 = t^2+2t+1

<=> x+7 = 3t^2+6t+3

<=> 3t^2+6t+3-x-7 = 0

<=> 3t^2+6t-x = 4

pt <=> 3x^2+6x-3 = t+1

<=>3x^2+6x-t = 1+3

<=> 3x^2+6x-t = 4

Từ đó ta có hệ pt đối xứng loại 2 :

3t^2+6t-x = 4

3x^2+6x-1 = 4

Đến đó bạn tự giải nha

Tk mk nha

1 tháng 2 2018

có bao

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a) \(\sqrt {3{x^2} - 6x + 1}  = \sqrt { - 2{x^2} - 9x + 1} \)

Bình phương hai vế của phương trình \(\sqrt {3{x^2} - 6x + 1}  = \sqrt { - 2{x^2} - 9x + 1} \) ta được

\(3{x^2} - 6x + 1 =  - 2{x^2} - 9x + 1\)

\( \Leftrightarrow 5{x^2} + 3x = 0\)

\( \Leftrightarrow x\left( {5x + 3} \right) = 0\)

\( \Leftrightarrow x = 0\) hoặc \(x = \frac{{ - 3}}{5}\)

Thay lần lượt hai giá trị này của x vào phương trình đã cho, ta thấy cả hai giá trị x = 0 và \(x = \frac{{ - 3}}{5}\) đều thỏa mãn.

Vậy tập nghiệm của phương trình đã cho là \(S = \left\{ {0;\frac{{ - 3}}{5}} \right\}\)

b) \(\sqrt {2{x^2} - 3x - 5}  = \sqrt {{x^2} - 7} \)

Bình phương hai vế của phương trình \(\sqrt {2{x^2} - 3x - 5}  = \sqrt {{x^2} - 7} \) , ta được

\(2{x^2} - 3x - 5 = {x^2} - 7\)

\( \Leftrightarrow {x^2} - 3x + 2 = 0\)

\( \Leftrightarrow x = 1\) hoặc \(\)\(x = 2\)

 Thay lần lượt giá trị của x vào phương trình đã cho, ta thấy không có giá trị nào của x thỏa mãn.

Vậy phương trình đã cho vô nghiệm.

7 tháng 5 2020

\(4x^4+4x^3+x^2+3x\ge0\)

\(4x^4+4x^2+1-\left(2x^4+6x^3-2x^2+4x-1\right)=\left(x^2-x+1\right)\sqrt{\left(x^2-x+1\right)\left(2x^2+1\right)+2x^4+6x^3-2x^3+4x-1}\)

\(\Leftrightarrow\left(2x^2+1\right)^2-\left(2x^4+6x^3-2x^2+4x-1\right)=\left(x^2-x+1\right)\sqrt{\left(x^2-x+1\right)\left(2x^2+1\right)+2x^4+6x^3-2x^3+4x-1}\)

\(2x^2+1=u;\sqrt{4x^4+4x^3+x^2+3x}=v\left(u>0;v>0\right)\)

\(\hept{\begin{cases}u^2-\left(2x^4+6x^3-2x^2+4x-1\right)=\left(x^2-x+1\right)v\\v^2-\left(2x^4+6x^3-2x^2+4x-1\right)=\left(x^2-x+1\right)u\end{cases}\Rightarrow u^2-v^2=\left(x^2-x+1\right)\left(v-u\right)\Leftrightarrow\orbr{\begin{cases}u=v\\u+v+x^2-x+1=0\end{cases}}}\)

  • \(u+v+x^2-x+1=0\Leftrightarrow u+v+\left(x-\frac{1}{2}\right)^2=-\frac{3}{4}\)
  • \(u=v\Leftrightarrow4x^4+4x^2+1=4x^4+4x^3+x^2+3x\Leftrightarrow\left(x-1\right)^3=-3x^3\Leftrightarrow x-1=-x\sqrt[3]{3}\Leftrightarrow x=\frac{1}{1+\sqrt[3]{3}}\)Đối chiếu điều kiện ta thu được nghiệm duy nhất \(x=\frac{1}{1+\sqrt[3]{3}}\)
11 tháng 8 2016

\(A=\frac{1}{x-1}\sqrt{\frac{3x^2-6x+3}{x}}=\frac{1}{x-1}\sqrt{\frac{\left(\sqrt{3}x-\sqrt{3}\right)^2}{x}}\)

\(=\frac{1}{x-1}.\frac{\sqrt{3}x-\sqrt{3}}{\sqrt{x}}=\frac{\sqrt{3}\left(x-1\right)}{\sqrt{x}\left(x-1\right)}=\sqrt{\frac{3}{x}}\)

28 tháng 10 2016

\(\sqrt{2x^2-4x+3}=\sqrt{2\left(x-1\right)^2+1}\);

\(\sqrt{3x^2-6x+7}=\sqrt{3\left(x-1\right)^2+4}\)

....

29 tháng 10 2016

Ta có 2x2 - 4x + 3 = 2(x - 1)2 + 1\(\ge1\)

3x2 - 6x + 7 = 3(x - 1)2 + 4 \(\ge4\)

=> VT \(\ge3\)

Ta lại có 2 - x2 + 2x = 3 - (x - 1)2 \(\le3\)

=> VP \(\le0\)

Dấu = xảy ra khi x = 1