Cho đoạn thẳng AB và trung điểm O của đoạn thẳng đó. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ hai tia Ax và By sao cho Ax song song với By. Trên tia Ax lấy hai điểm C và E sao cho BD = AC, BF = AE. Chứng minh rằng:
a) Ba điểm C, O, D thẳng hàng và ba điểm E, O, F thẳng hàng
b) DE = CF và DE song song với CF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thứ nhất phải nói, công cụ vẽ hình quá sơ sài :)
a/ cm C, O , D thẳng hàng.
Xét tam giác AOC và tam giác BOD ta có:
AO = OB(O là trung điểm của AB) (1)
AC = BD (gt) (2)
góc CAO = góc DBO (2 góc so le trong , Ax//By) (3)
Từ (1),(2),(3) => tam giác AOC và tam giác BOD (c-g-c)
=> góc AOC = góc BOD (2 góc tương ứng).
Ta có :
góc AOC + góc COD = 1800 (2 góc kề bù) (1)
góc AOC = góc BOD (cmt) (2)
Từ (1),(2) => góc BOD + góc COD = 1800
=> góc COD = 1800
=> C, O , D thẳng hàng.
C/m E,O,F thẳng hàng.
bạn tự chứng minh theo cách trên.
b/ cm DE = CF và DE// CF
Ta có :
AE = BF (gt) (1)
AC = BD (gt) (2)
Từ (1),(2)=> AE - AC = BF - BD
=> CE = DF
Xét tam giác DEC và tam giác CFD ta có:
CD = CD (cạnh chung) (1)
CE = FD (cmt) (2)
góc ECD = góc FDC (2 góc so le trong, Ax//By) (3)
Từ (1),(2),(3) => tam giác DEC = tam giác CFD (c-g-c)
=> DE = CF (2 cạnh tương ứng)
Ta có :
góc CDE = góc DCF ( tam giác DEC = tam giác CFD)
mà góc CDE và góc DCF nằm ở vị trí so le trong
nên DE //CF
Xét ΔCOA và ΔDOB :
CA=DB( gt)
∠CAO=∠DBO (gt)
AO=OB
=> ΔCOA=ΔDOB (c-g-c) => ∠AOC =∠BOD
Lại có ∠DOB + ∠BOC= ∠BOC +∠COA =∠AOB=1800
=> ∠DOC =1800=> C,O,D thẳng hàng
CMTT
=> ΔAEO =ΔBFO( c-g-c)
=>∠AOE=∠BOF
=> ∠EOF =∠AOP + ∠AOE= ∠AOF + ∠BOF =∠AOB=1800
=> E,O,F thẳng hàng
+ Vì \(Ax//By\left(gt\right)\)
\(\Rightarrow\widehat{BAx}=\widehat{ABy}\)( vì 2 góc so le trong ) (1)
Hay \(\widehat{OAC}=\widehat{OBD}\)
Xét \(\Delta OAC\)và \(\Delta OBD\)có :
\(OA=OB\) ( vì O là trung điểm của AB )
\(\widehat{OAC}=\widehat{OBD}\left(cmt\right)\)
\(AC=BD\left(gt\right)\)
Suy ra \(\Delta OAC=\Delta OBD\left(c.g.c\right)\)
\(\Rightarrow OC=OD\)( 2 cạnh tương ứng )
+ ) Từ (1) \(\Rightarrow\widehat{OAE}=\widehat{OBF}\)
Xét \(\Delta OAE\)và \(\Delta OBF\)có :
\(OA=OB\)( vi O là trung điểm của AB )
\(\widehat{OAE}=\widehat{OBF}\left(cmt\right)\)
\(AE=BF\left(gt\right)\)
Suy ra :\(\Delta OAE=\Delta OBF\left(c.g.c\right)\)
\(\Rightarrow OE=OF\)( 2 cạnh tương ứng )
Xét \(\Delta OED\)và \(\Delta OFC\)có :
\(OE=OF\left(cmt\right)\)
\(\widehat{EOD}=\widehat{FOC}\)( vì 2 góc đối đỉnh )
\(OD=OC\left(cmt\right)\)
Suy ra \(\Delta OED=\Delta OFC\left(c.g.c\right)\)
\(\Rightarrow ED=CF\)( 2 cạnh tương ứng ) (đpcm)
Chúc bạn học tốt !!!
vào link dưới đây:
https://olm.vn/hoi-dap/detail/63073899634.html