K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2018

Câu hỏi của I lay my love on you - Toán lớp 8 - Học toán với OnlineMath    dv

30 tháng 7 2018

\(n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)^{\left(1\right)}\)

              \(=n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)\)

              \(=n\left(n-1\right)\left(n+1\right)\left[\left(n-2\right)\left(n+2\right)+5\right]\)

               \(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)\)

Vì n(n-2)(n+2)(n - 1)(n + 1) chia hết cho 5 

    5n(n - 1)(n + 1) chia hết cho 5

=>  n(n-2)(n+2)(n - 1)(n + 1) + 5n(n - 1)(n + 1) chia hết cho 5 

=> \(n^5-n⋮5\)(2)

 Vì n , (n-1) , (n+1) là 3 số tự nhiên liên tiếp nên luôn tồn tại 1 số chia hết cho 2 và 3 trong 3 số này

Mà ( 2 ; 3 ) = 1

=> n(n+1)(n-1) chia hết cho 2.3=6

=> n(n+1)(n-1)(n²+1 ) chia hết cho 6

Hay n^5 - n chia hết cho 6 (3)

Từ (2) , (3) và ( 5 ; 6 ) = 1

=> n^5 -n chia hết cho 5.6 = 30

Vậy n^5 - n chia hết cho 30

 

13 tháng 7 2017

Tạ Minh Khoa            

Ta có: n5 – n = n.(n4 – 1) = n.(n4 – n2 + n2 – 1)

= n.[(n4 – n2) + (n2 – 1)]

= n.[n2(n2 – 1) + (n2 – 1)]

= n.(n2 – 1).(n2 + 1)

= n.(n2 – n + n – 1)(n2 + 1)

= n.[(n2 – n) + (n – 1)].(n2 + 1)

= n.[n(n- 1) + (n – 1)].(n2 + 1)

= n.(n – 1).(n + 1).(n2 + 1)

Vì (n – 1); n; (n + 1) là ba số tự nhiên liên tiếp nên n5 – n chia hết cho 3 (1)

Mặt khác: n5 = n4+1 có chữ số tận cùng giống chữ số tận cùng của n

=> n5 – n có chữ số tận cùng bằng 0.

=> n5 – n chia hết cho 10 (2)

Từ (1), (2) suy ra: n5 – n chia hết cho 3 và 10, (3, 10) = 1 nên suy ra: n5 – n chia hết cho 30 (đpcm).

Tạ Minh Khoa

Ta có: n5 – n = n.(n4 – 1) = n.(n4 – n2 + n2 – 1)

= n.[(n4 – n2) + (n2 – 1)]

= n.[n2(n2 – 1) + (n2 – 1)]

= n.(n2 – 1).(n2 + 1)

= n.(n2 – n + n – 1)(n2 + 1)

= n.[(n2 – n) + (n – 1)].(n2 + 1)

= n.[n(n- 1) + (n – 1)].(n2 + 1)

= n.(n – 1).(n + 1).(n2 + 1)

Vì (n – 1); n; (n + 1) là ba số tự nhiên liên tiếp nên n5 – n chia hết cho 3 (1)

Mặt khác: n5 = n4+1 có chữ số tận cùng giống chữ số tận cùng của n

=> n5 – n có chữ số tận cùng bằng 0.

=> n5 – n chia hết cho 10 (2)

Từ (1), (2) suy ra: n5 – n chia hết cho 3 và 10, (3, 10) = 1 nên suy ra: n5 – n chia hết cho 30 (đpcm).

26 tháng 10 2016
A=n^5-n
=n(n^4-1)
=n(n-1)(n+1)(n^2+1)
n(n-1)(n+1) chia hết cho 6
nếu n=5k => A chia hết cho 5.6=30
nếu n=5k+1 => -1 chia hết cho 5 => A chia hết cho 30
Nếu n=5k+2 => ^2+1=25k^2+20k+5 chia hết cho 5
=> A chia hết cho 10
nếu n=5k+3 =>^2+1=25k^2+30k+10 chia hết cho 5
=>A chia hết cho 30
Nếu n=5k+4 =>+1=5k+5 chia hết cho 5
=>A chia hết cho 30
Vậy với n nguyên dương thì n^5-n chia hết cho 30  
13 tháng 10 2017

Ta có: n^5 - n = n (n^4 -1 ) 
=n (n^2-1)(n^2+1) 
=n(n-1)(n+1)(n^2 - 4 +5) 
=n(n-1)(n+1)(n^2-4) + n(n-1)(n+1)5 
= (n-2)(n-1)n(n+1)(n+2)+ n(n-1)(n+1)5 
Vì (n-2)(n-1)n(n+1)(n+2) chia hết cho 30 
và n(n-1)(n+1)5 chia hết cho 30 
Nên (n-2)(n-1)n(n+1)(n+2)+ n(n-1)(n+1)5 chia hết cho 30 
hay n^5-n chia hết cho 30

17 tháng 12 2014

a,60 chia hết cho 15 => 60n chia hết cho 15 ; 45 chia hết cho 15 => 60n+45 chia hết cho 15 (theo tính chất 1)

   60n chia hết cho 30 ; 45 không chia hết cho 30 => 60n+45 không chia hết cho 30 (theo tính chất 2)

b,Giả sử có số a thuộc N thoả mãn cả 2 điều kiện đã cho thì a=15k+6 (1) và a=9q+1.

Từ (1) suy ra a chia hết cho 3, từ (2) suy ra a không chia hết cho 3. Đó là điều vô lí. Vậy không có số tự nhiên nào thoả mãn đề.

c,1005 chia hết cho 15 => 1005a chia hết cho 15 (1)

   2100 chia hết cho 15 => 2100b chia hết cho 15 (2)

Từ (1) và (2) suy ra 1005a+2100b chia hết cho 15 (theo tính chất 1)

d,Ta có : n^2+n+1=nx(n+1)+1

nx(n+1) là tích của 2 số tự nhiên liên tiếp nên chia hết cho 2 suy ra nx(n+1)+1 là một số lẻ nên không chia hết cho 2.

nx(n+1) là tích của 2 số tự nhiên liên tiếp nên không có tận cùng là 4 hoặc 9 nên nx(n+1)+1 không có tận cùng là 0 hoặc 5, do đó nx(n+1)+1 không chia hết cho 5.

10 tháng 6 2015

Mình xin trả lời ngắn gọn hơn!                                                                      a)60 chia hết cho 15=> 60n chia hết cho 15                                                   15 chia hết cho 15                                                                                       =>60n+15 chia hết cho 15.                                                                             60 chia hết cho 30=>60n chia hết cho 30                                                      15 không chia hết cho 30                                                                       =>60n+15 không chia hết cho 30                                             b)Gọi số tự nhiên đó là A                                                                           Giả sử A thỏa mãn cả hai điều kiện                                                           => A= 15.x+6 & = 9.y+1                                                                         Nếu A = 15x +6 => A chia hết cho 3                                                          Nếu A = 9y+1 => A không chia hết cho 3 => vô lí.=>                                    c) Vì 1005;2100 chia hết cho 15=> 1005a; 2100b chia hết cho 15.             => 1500a+2100b chia hết cho 15.                                                          d) A chia hết cho 2;5 => A chia hết cho 10.                                                 => A là số chẵn( cụ thể hơn là A là số có c/s tận cùng =0.)                    Nếu n là số chẵn => A là số lẻ. (vì chẵn.chẵn+chẵn+lẻ=lẻ)                           Nếu n là số lẻ => A là số lẻ (vì lẻ.lẻ+lẻ+lẻ=lẻ)                                       => A không chia hết cho 2;5

 

 

2 tháng 11 2021

\(n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)\)

\(=n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)\)

Do \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\) là tích 5 số nguyên liên tiếp nên chia hết cho 5 và \(5n\left(n-1\right)\left(n+1\right)⋮5\forall n\in Z^+\)

\(\Rightarrow n^5-n⋮5\forall n\in Z^+\)

15 tháng 12 2023

Có: $6^n\cdot5=(2\cdot3)^n\cdot5=2^n\cdot3^n\cdot5$

$=(2\cdot5)\cdot2^{n-1}\cdot3^n=10\cdot2^{n-1}\cdot3^n$

Với $n$ nguyên dương $\Rightarrow n-1\ge 0$

Khi đó: $10\cdot2^{n-1}\cdot3^n\vdots10$

hay $6^n\cdot5\vdots10$ với $n$ nguyên dương.

BN thử vào câu hỏi tương tự xem có k?

Nếu có thì bn xem nhé!

Nếu k thì xin lỗi đã làm phiền bn

Hội con 🐄 chúc bạn học tốt!!!