B = \(\frac{1}{3}\)+ \(\frac{1}{9}\)+ \(\frac{1}{27}\) + ........................... + \(\frac{1}{6561}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho \(A=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{6561}\)
\(\frac{1}{3}A=\frac{1}{3}\times\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{6561}\right)\)
\(\frac{1}{3}A=\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+...+\frac{1}{19683}\)
\(A-\frac{1}{3}A=\left(\frac{1}{3}+\frac{1}{9}+...+\frac{1}{6561}\right)-\left(\frac{1}{9}+\frac{1}{27}+...+\frac{1}{19683}\right)\)
\(\frac{2}{3}A=\frac{1}{3}-\frac{1}{19683}\)
\(A=\frac{4840}{9683}:\frac{2}{3}=\frac{7260}{9683}\)
\(A=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+...+\frac{1}{6561}\)
\(\Rightarrow A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^8}\)
\(\Rightarrow3A=3.\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^8}\right)\) \(=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^7}\)
\(\Rightarrow3A-A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^7}-\frac{1}{3}-\frac{1}{3^2}-\frac{1}{3^3}-...-\frac{1}{3^8}\)
\(\Rightarrow2A=1-\frac{1}{3^8}\) \(\Rightarrow A=\frac{1-\frac{1}{3^8}}{2}\)
k cho mik đi mn!Nguyễn Như Quỳnh!
\(a\)) Giải:
\(A=\frac{\frac{1}{3}+\frac{1}{9}-\frac{1}{27}}{\frac{5}{3}+\frac{5}{9}-\frac{5}{27}}=\frac{\frac{1}{3}+\frac{1}{9}-\frac{1}{27}}{5.\left(\frac{1}{3}+\frac{1}{9}-\frac{1}{27}\right)}=\frac{1}{5}\)
\(b\)) Giải:
\(B=\frac{\frac{2}{3}-\frac{1}{4}+\frac{5}{11}}{\frac{5}{12}+1-\frac{7}{11}}=\frac{\left(\frac{2}{3}-\frac{1}{4}+\frac{5}{11}\right).132}{\left(\frac{5}{12}+1-\frac{7}{11}\right).132}=\frac{88-33+60}{55+132-84}=\frac{115}{103}\)
Hình như câu này tớ đã gặp đâu đó trong đề thi HSG rồi!
\(B=\frac{1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}}{2+\frac{2}{3}+\frac{2}{9}+\frac{2}{27}}\div\frac{4+\frac{4}{7}+\frac{4}{9}+\frac{4}{343}}{1+\frac{1}{7}+\frac{1}{9}+\frac{1}{343}}\)
\(=\frac{1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}}{2\left(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}\right)}\div\frac{4\left(1+\frac{1}{7}+\frac{1}{9}+\frac{1}{3}\right)}{1+\frac{1}{7}+\frac{1}{9}+\frac{1}{3}}\)
\(=\frac{1}{2}\div4=\frac{1}{8}\)
=182.\(\orbr{\begin{cases}1.\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}\right)\\2.\left(\frac{1}{2}+\frac{1}{9}+\frac{1}{27}\right)\end{cases}}:\frac{4.\left(\frac{1}{7}+\frac{1}{9}-\frac{1}{343}\right)}{1.\left(\frac{1}{3}+\frac{1}{49}-\frac{1}{343}\right)}:\frac{91}{80} \)
=.\(182.\left(\frac{1}{2}:\frac{4}{1}\right).\frac{91}{80}\)
=\(182.\frac{1}{8}.\frac{91}{80}\)
=.\(182.\frac{91}{640}\)
=\(\frac{8281}{320}\)
\(=182.\left[\frac{1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}}{2.\left(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}\right)}:\frac{4.\left(1-\frac{1}{7}+\frac{1}{9}-\frac{1}{343}\right)}{1-\frac{1}{7}+\frac{1}{9}-\frac{1}{343}}\right]:\frac{919191}{808080}\)
\(=182.\frac{1}{8}.\frac{808080}{919191}=\frac{182}{8}.\frac{80}{91}=20\)
\(=\left(\frac{1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}}{2\left(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}\right)}:\frac{4\left(1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}\right)}{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}\right):\frac{919191}{808080}\)
\(=\left(\frac{1}{2}:4\right):\frac{919191}{808080}=\frac{1}{8}\cdot\frac{808080}{919191}=\frac{10}{91}\)
Bài giải
\(\left(\frac{1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}}{2+\frac{2}{3}+\frac{2}{9}+\frac{2}{27}}\text{ : }\frac{4-\frac{4}{7}+\frac{4}{49}-\frac{4}{343}}{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}\right)\text{ : }\frac{919191}{808080}\)
\(=\left(\frac{1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}}{2\left(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}\right)}\text{ : }\frac{4\left(1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}\right)}{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}\right)\text{ : }\frac{91}{80}\)
\(=\left(\frac{1}{2}\text{ : }\frac{4}{1}\right)\text{ : }\frac{91}{80}=\frac{1}{8}\text{ : }\frac{91}{80}=\frac{10}{91}\)
\(B=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{6561}\)
\(B=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^8}\)
\(3B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^7}\)
\(3B-B=\left(1+\frac{1}{3}+...+\frac{1}{3^7}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^8}\right)\)
\(2B=1-\frac{1}{3^8}\)
\(B=\frac{1-\frac{1}{3^8}}{2}\)
B = 1/3 + 1/9 + 1/27 + ... + 1/6561
B = 1/3^1 + 1/3^2 + 1/3^3 + ... + 1/3^8
3B = 1 + 1/3^1 + 1/3^2 + ... + 1/3^7
3B - B = ( 1 + 1/3^1 +1/3^2 + ... + 1/3^7 ) - ( 1/3^1 + 1/3^2 + 1/3^3 + .... + 1/3^8 )
2B = 1 - 1/3^8
B = 1 - 1/3^8 / 2