rút gọn biểu thức
\(\left(\frac{5x+2}{x^2-10}+\frac{5x-2}{x^2+10}\right)\cdot\frac{x^2-100}{x^2+4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(R=\left[\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3\left(\sqrt{x}+3\right)}{x-9}\right]:\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
a/ \(R=\left[\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt[]{x-3}\right)}\right]:\left(\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\right)\)
=> \(R=\left[\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3}{\sqrt[]{x-3}}\right]:\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
=> \(R=\left[\frac{2\sqrt{x}}{\sqrt{x}-3}+1\right]:\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
=> \(R=\left[\frac{2\sqrt{x}+\sqrt{x}-3}{\sqrt{x}-3}\right].\frac{\sqrt{x}-3}{\sqrt{x}+1}\)
=> \(R=\frac{3\sqrt{x}-3}{\sqrt{x}-3}.\frac{\sqrt{x}-3}{\sqrt{x}+1}=\frac{3\left(\sqrt{x}-1\right)}{\sqrt{x}+1}\)
b/ Để R<-1 => \(\frac{3\left(\sqrt{x}-1\right)}{\sqrt{x}+1}< -1\)
<=> \(3\sqrt{x}-3< -\sqrt{x}-1\)
<=> \(4\sqrt{x}< 2\)=> \(\sqrt{x}< \frac{1}{2}\) => \(-\frac{1}{4}< x< \frac{1}{4}\)
Chỗ => R = \(\left(\frac{2\sqrt{x}}{\sqrt{x}-3}+1\right):\frac{\sqrt{x}+1}{\sqrt{x}-3}\) là sao vậy ạ?
\(P=\left(\frac{5x+2}{x^2-10}+\frac{5x-2}{x^2+10}\right).\frac{x^2-100}{x^2+4}\)
\(P=\left[\frac{\left(5x+2\right)\left(x^2+10\right)+\left(5x-2\right)\left(x^2-10\right)}{\left(x^2-10\right)\left(x^2+10\right)}\right].\frac{x^2-100}{x^2+4}\)
\(P=\frac{5x^3+50x+2x^2+20+5x^3-50x-2x^2+20}{x^4-100}.\frac{x^2-100}{x^2+4}\)
\(P=\frac{10x^3+40}{x^4-100}.\frac{x^2-100}{x^2+4}\)
\(P=\frac{\left(10x^3+40\right)\left(x^2-100\right)}{\left(x^4-100\right)\left(x^2+4\right)}\)
P/s : MK chỉ làm đưcọ đến thế thôi!