K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2018

A= n(n^2 +7n+6) ví A chia hết 125 nên A cũng chia hết cho 5 => n có số cuối la 0 hoặc 5 (1)

A chia hết 125 => A luôn luôn viết được dạng tích 125xB ( B thuộc N khác 0)

TH1: n chia hết 125 => n nhỏ nhất la 125

TH2: (n^2+7n+6)=C chia hết 125 

C có số cuối là 0 hoặc 5 và lớn hơn 125

th1. C có số cuối la 0 : C = n(n+7) +6 

C có số cuối 0 khi n(n+7) có số cuối là 4

theo (1) n kết thúc là số 0 hoặc 5 => vô nghiệm.

th2. C có số cuối là 5 =>n(n+7) kết thúc là số 9

theo (1) n kết thúc là 0 hoặc 5 => vô nghiệm

Vậy n nhỏ nhất la 125 thì A chia hêt 125

23 tháng 8 2018

Mình tìm được 24 bạn ơi😮😮

25 tháng 6 2019

n = 24 nhé =))

11 tháng 2 2020

3n+2 \(⋮\)n-1

=> 3n+1 \(⋮\)n-1

=> (3n +1) - 3(n-1)

=> (3n+1) - ( 3n-3)

=> 3n+1 -3n+3

=> ( 3n-3n) + (1+3)

=> 4 \(⋮\)n-1

=> n-1 \(\in\)Ư(4)= { 1;2 ;4; -1; -2; -4}

Xong bn tự thay nha

Mk ko biết trình bày cho lắm

26 tháng 11 2020

Bạn xem lời giải ở đây

Câu hỏi của Bùi Thị Hoài - Toán lớp 9 - Học toán với OnlineMath

1 tháng 6 2020

tự làm là hạnh phúc của mỗi công dân

23 tháng 10 2023

\(tana=\sqrt{3}\)

=>\(\dfrac{sina}{cosa}=\sqrt{3}\)

=>\(sina=\sqrt{3}\cdot cosa\)

\(1+tan^2a=\dfrac{1}{cos^2a}\)

=>\(\dfrac{1}{cos^2a}=1+3=4\)

=>\(cos^2a=\dfrac{1}{4}\)

=>\(cosa=\dfrac{1}{2}\)

=>\(sina=\dfrac{\sqrt{3}}{2}\)

\(A=\dfrac{sin^2a-cos^2a}{sina\cdot cosa}\)

\(=\dfrac{\dfrac{3}{4}-\dfrac{1}{4}}{\dfrac{\sqrt{3}}{2}\cdot\dfrac{1}{2}}=\dfrac{2}{4}:\dfrac{\sqrt{3}}{4}=\dfrac{2}{\sqrt{3}}=\dfrac{2\sqrt{3}}{3}\)

16 tháng 11 2021

P = F/S

16 tháng 11 2021

CT 

P=d.S.h/S

P:pascal(Pa)

d:N/m3

h: mét

12 tháng 2 2016

a, ta có n2-7=n2-9+2=(n+3)(n-3)+2

vì (n+3)(n-3) chia hét cho n-3 nên để(n+3)(n-3) +2 chia hết cho n+3 thì 2 phải chia hết cho n+3

hay n+3 là ước của 2 

ta có Ư(2)= -1.-2,1,2

nếu n+3 = -1 thì x=-4

nếu n+3 = -2 thì x=-5

nếu n+3 = 1 thì n=-2

nếu n+3 = 2 thì n=-1

29 tháng 7 2019

a) Ta có: 2|x + 2| \(\ge\)\(\forall\)x

=> 2|x + 2| + 15 \(\ge\)15 \(\forall\)x

Hay A \(\ge\)15 \(\forall\)x

Dấu "=" xảy ra <=>x + 2 = 0 <=> x = -2

Vậy Min A = 15 tại x = -2

b) Ta có: 2(x + 5)4 \(\ge\)\(\forall\)x

         3|x + y + 2| \(\ge\)\(\forall\)x;y

=> 20 - 2(x + 5)4 - 3|x + y + 2| \(\le\)20 \(\forall\)x;y

Hay B \(\le\)20 \(\forall\)x;y

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+5=0\\x+y+2=0\end{cases}}\) <=> \(\hept{\begin{cases}x=-5\\y=-2-x\end{cases}}\) <=> \(\hept{\begin{cases}x=-5\\y=-2-\left(-5\right)=3\end{cases}}\)

Vậy Max B = 20 tại x = -5 và y = 3