Giải PT
\(\sqrt{x+2-3\sqrt{2x-5}}+\sqrt{x-2\sqrt{2x-5}}=2\sqrt{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x\ge\dfrac{5}{2}\)
\(\sqrt{2x-4+2\sqrt{2x-5}}+\sqrt{2x+4+6\sqrt{2x-5}}=14\)
\(\Leftrightarrow\sqrt{\left(\sqrt{2x-5}+1\right)^2}+\sqrt{\left(\sqrt{2x-5}+3\right)^2}=14\)
\(\Leftrightarrow\left|\sqrt{2x-5}+1\right|+\left|\sqrt{2x-3}+3\right|=14\)
\(\Leftrightarrow2\sqrt{2x-5}=10\)
\(\Leftrightarrow\sqrt{2x-5}=5\)
\(\Leftrightarrow2x-5=25\)
\(\Leftrightarrow x=15\)
Hong Ra On chuyên gì thế hả sao gọi mình là sao
\(\sqrt{x+2-3\sqrt{2x-5}}+\sqrt{x-2+\sqrt{2x-5}}=2\sqrt{2}\)
\(\left\{{}\begin{matrix}x\ge\dfrac{5}{2};y=\sqrt{2x-5};y\ge0\\\sqrt{\dfrac{\left(y-3\right)^2}{2}}+\sqrt{\dfrac{\left(y+1\right)^2}{2}}=2\sqrt{2}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x\ge\dfrac{5}{2};y=\sqrt{2x-5};y\ge0\\\left|\dfrac{\left(y-3\right)}{\sqrt{2}}\right|+\left|\dfrac{\left(y+1\right)}{\sqrt{2}}\right|=\left|\dfrac{4}{\sqrt{2}}\right|=2\sqrt{2}=VP\end{matrix}\right.\)đẳng thức khi
\(7\ge x\ge\dfrac{5}{2}\)
kết luận
nghiệm của pt là : \(7\ge x\ge\dfrac{5}{2}\)
Đặt \(2x-5=t^2\)ta có \(x=\frac{t^2+5}{2}\)thay giá trị của x vào phương trình đã cho được:
\(\sqrt{\frac{t^2+5}{2}-2+t}+\sqrt{\frac{t^2+5}{2}+2+3t}=7\sqrt{2}\)
hay \(\sqrt{t^2+5-2+2t}+\sqrt{t^2+5+4+6t}=14\)
\(\sqrt{t^2+2t+1}+\sqrt{t^2+6t+9}=14\)
\(\sqrt{\left(t+1\right)^2}+\sqrt{\left(t+3\right)^2}=14\)
\(t+1+t+3=14\)
\(2t+4=14\)
2t=10
t=5
Từ đó \(x=\frac{25+5}{2}=15\)
m=\(\sqrt{2x-5}\)=>\(x=\dfrac{m^2+5}{2}\)
\(\sqrt{\dfrac{m^2+5}{2}+2-3m}+\sqrt{\dfrac{m^2+5}{2}-2+m}=2\sqrt{2}< =>\sqrt{\dfrac{m^2+5+4-6m}{2}}+\sqrt{\dfrac{m^2+5-4+2m}{2}}=2\sqrt{2}< =>\left(m+1\right)\left(\dfrac{\sqrt{8-8m}+1}{\sqrt{2}}\right)=2\sqrt{2}< =>\left(m+1\right)\left(\sqrt{8-8m}+1\right)=2\)bình 2 vế lên
"bình 2 vế lên" dòng này cuối cùng không biết thằng nào viết cái web này mà gán biểu thức thành ra thế
a, \(\sqrt{2x^2-3}=\sqrt{4x-3}\) (x \(\ge\) \(\sqrt{\dfrac{3}{2}}\))
Vì hai vế ko âm, bp 2 vế ta được:
2x2 - 3 = 4x - 3
\(\Leftrightarrow\) 2x2 = 4x
\(\Leftrightarrow\) x2 = 2x
\(\Leftrightarrow\) x2 - 2x = 0
\(\Leftrightarrow\) x(x - 2) = 0
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(KTM\right)\\x=2\left(TM\right)\end{matrix}\right.\)
Vậy S = {2}
b, \(\sqrt{2x-1}=\sqrt{x-1}\) (x \(\ge\) 1)
Vì hai vế ko âm, bp 2 vế ta được:
2x - 1 = x - 1
\(\Leftrightarrow\) x = 0 (KTM)
Vậy x = \(\varnothing\)
c, \(\sqrt{x^2-x-6}=\sqrt{x-3}\) (x \(\ge\) 3)
Vì hai vế ko âm, bp 2 vế ta được:
x2 - x - 6 = x - 3
\(\Leftrightarrow\) x2 - 2x - 3 = 0
\(\Leftrightarrow\) x2 - 3x + x - 3 = 0
\(\Leftrightarrow\) x(x - 3) + (x - 3) = 0
\(\Leftrightarrow\) (x - 3)(x + 1) = 0
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\left(TM\right)\\x=-1\left(KTM\right)\end{matrix}\right.\)
Vậy S = {3}
d, \(\sqrt{x^2-x}=\sqrt{3x-5}\) (x \(\ge\) \(\dfrac{5}{3}\))
Vì hai vế ko âm, bp 2 vế ta được:
x2 - x = 3x - 5
\(\Leftrightarrow\) x2 - 4x + 5 = 0
\(\Leftrightarrow\) x2 - 4x + 4 + 1 = 0
\(\Leftrightarrow\) (x - 2)2 + 1 = 0
Vì (x - 2)2 \(\ge\) 0 với mọi x \(\ge\) \(\dfrac{5}{3}\) \(\Rightarrow\) (x - 2)2 + 1 > 0 với mọi x \(\ge\) \(\dfrac{5}{3}\)
\(\Rightarrow\) Pt vô nghiệm
Vậy S = \(\varnothing\)
Chúc bn học tốt!