chứng minh rằng nếu abcd chia hết cho 99 thì ab + cd chia hết cho 99
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bấm vào đây bạn nhé Câu hỏi của Nguyễn Khánh Tâm - Toán lớp 6 - Học toán với OnlineMath
b, ta có: abcd = ab.100+cd
= ab.99+ab+cd
=ab.99+( ab+cd)
Vì ab.99 chia hết cho 99, ab+cd chia hết cho 99
Nên abcd chia hết cho 99 nếu ab+cd chia hết cho 99
abcd chia het cho 99
=>ab.100+cd chia het cho 99
=>ab.99+(ab+cd) chia het cho 99
Vi ab.99 chia het cho 99
Nen ab+cd chia het cho 99 (ĐPCM)
Ta có: abcd chia hết cho 99
=>ab.100+cd chia hết cho 99
=>99.ab+ab+cd chia hết cho 99
Vì 99.ab chia hết cho 99
=>ab+cd chia hết cho 99
=>ĐPCM
Ngược lại:
Ta có: ab+cd chia hết cho 99
=>99.ab+ab+cd chia hết cho 99
=>ab.100+cd chia hết cho 99
=>abcd chia hết cho 99
=>ĐPCM
ta có : abcd= 100ab+cd chia hết cho 99
=99ab+ab+cd
=(99ab)+(ab+cd) chia hết cho 99
mà 99ab chia hêt cho 99 =>abcd chia hết cho 99 khi ab+cd chia hết cho 99 (tính chất chia hết của một tổng)
Ta có : abcd
= ab.100 + cd
= ab.99 + ab + cd
= ab.99 + (ab + cd)
Mà ab.99 chia hết cho 99 , ab + cd chia hết cho 99
Nên abcd chia hết cho 99 nếu ab + cd chia hết cho 99
Ta có: abcd chia hết cho 99
\(\Rightarrow\)ab . 100 + cd chia hết cho 99
\(\Rightarrow\)99 . ab + ab + cd chia hết cho 99
Vì 99 . ab chia hết cho 99 \(\Rightarrow\)ab + cd chia hết cho 99 ( ĐPCM )
Ngược lại:
Ta có: ab + cd chia hết cho 99
\(\Rightarrow\)99 . ab + ab + cd chia hết cho 99
\(\Rightarrow\)ab . 100 + cd chia hết cho 99
\(\Rightarrow\)abcd chia hết cho 99 ( ĐPCM )
Bài này tương tự bài lúc nãy
Chỉ thay đổi cách diễn đạt thôi
Ủng hộ nha
ta có abcd=ab.100+bc=99ab+ab+dc
do abcd chia hết cho 99 mà 99ab chia hết cho 99
=>ab+bc chia hết cho 99
tick nha
Tham khảo câu hỏi tương tự nhé bạn