K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2018

giải luôn cho 

x-2/(x+3)(2x+6<0

=>x-2/2(x+2)^2<0

=> x-2 va 2(x+2)^2 trai dấu

Mà 2(x+2)^2>=0

=>x-2<0 

=> x<2 

Vậy x<2 <=> ....

a: \(A=\dfrac{x^2-5x+6-x^2+x+2x^2-6}{x\left(x-3\right)}=\dfrac{2x^2-4x}{x\left(x-3\right)}=\dfrac{2x}{x-3}\)

20 tháng 12 2022

a: ĐKXĐ: x<>2; x<>3

\(Q=\dfrac{2x-9-x^2+9+2x^2-4x+x-2}{\left(x-3\right)\left(x-2\right)}\)

\(=\dfrac{x^2-x-2}{\left(x-3\right)\left(x-2\right)}=\dfrac{x+1}{x-3}\)

b: Để P<1 thì P-1<0

=>\(\dfrac{x+1-x+3}{x-3}< 0\)

=>x-3<0

=>x<3

8 tháng 9 2023

`P <= 1` là `P` ở đâu cậu nhỉ cộng `A` với `B` lại với nhau à?

8 tháng 9 2023

xin lỗi để mình viết cả bài toán

29 tháng 10 2021

Bài 1: 

b: \(3x-6=x^2-16\)

\(\Leftrightarrow x^2-3x-10=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)

5 tháng 7 2017

\(\frac{1}{3}-\left(\frac{2}{3}-x+\frac{5}{4}\right)=\frac{7}{12}-\left(\frac{5}{2}-\frac{13}{6}\right)\)

\(\frac{1}{3}-\left(\frac{2}{3}-x+\frac{5}{4}\right)=\frac{7}{12}-\frac{1}{3}\)

\(\frac{1}{3}-\left(\frac{2}{3}-x+\frac{5}{4}\right)=\frac{1}{4}\)

\(\frac{2}{3}-x+\frac{5}{4}=\frac{1}{3}-\frac{1}{4}\)

\(\frac{2}{3}-x+\frac{5}{4}=\frac{1}{12}\)

\(\frac{2}{3}-x=\frac{1}{12}-\frac{5}{4}\)

\(\frac{2}{3}-x=-\frac{7}{6}\)

\(x=\frac{2}{3}-\left(-\frac{7}{6}\right)\)

\(x=\frac{2}{3}+\frac{7}{6}\)

\(x=\frac{11}{6}\)

2: Để \(2x\left(x+1\right)< 0\) thì \(\left\{{}\begin{matrix}x+1\ge0\\x\le0\end{matrix}\right.\Leftrightarrow-1\le x\le0\)

20 tháng 8 2021

Bạn ơi nếu x  ≤ 0 mà x = 0 thì 2x (x+1) = 0 

mà 0 = 0 thì sia rồi đúng ko

 
26 tháng 11 2021

\(A=x^3-2x+n\)

\(B=n-2\)

\(A\text{⋮}B\) ⇒ \(\left(x^3-2x+n\right)\text{⋮}\left(n-2\right)\)

⇒ \(\left[\left(x^3-2x^2\right)+\left(2x^2-4x\right)+\left(2x-4\right)+\left(n+4\right)\right]\text{⋮}\left(n-2\right)\)

⇒ \(\left[x^2\left(x-2\right)+2x\left(x-2\right)+2\left(x-2\right)+\left(n+4\right)\right]\text{⋮}\left(n-2\right)\)

⇒ \(\left[\left(x-2\right)\left(x^2+2x+2\right)+\left(n+4\right)\right]\text{⋮}\left(x-2\right)\)

Vì \(\left(x-2\right)\left(x^2+2x+2\right)\text{⋮}\left(n-2\right)\)

Để \(A\text{⋮}B\)

⇒ \(n+4=0\)

⇒ \(n=-4\)

a: \(P=\dfrac{2x-9-x^2+9+2x^2-4x+x-2}{\left(x-2\right)\left(x-3\right)}\)

\(=\dfrac{x^2-x-2}{\left(x-2\right)\left(x-3\right)}=\dfrac{x+1}{x-3}\)

a: ĐKXĐ: \(x\notin\left\{-1;3\right\}\)

Ta có: \(A=\dfrac{x^3-3}{x^2-2x-3}+\dfrac{6-2x}{x+1}+\dfrac{x+3}{3-x}\)

\(=\dfrac{x^3-3-2\left(x-3\right)^2-\left(x+3\right)\left(x+1\right)}{\left(x-3\right)\left(x+1\right)}\)

\(=\dfrac{x^3-3-2x^2+12x-18-x^2-4x-3}{\left(x-3\right)\left(x+1\right)}\)

\(=\dfrac{x^4-3x^2+8x-24}{\left(x-3\right)\left(x+1\right)}\)

\(=\dfrac{x^2\left(x-3\right)+8\left(x-3\right)}{\left(x-3\right)\left(x+1\right)}\)

\(=\dfrac{x^2+8}{x+1}\)

b: Ta có: A=x-2

\(\Leftrightarrow x^2+8=x^2-x-2\)

\(\Leftrightarrow8+x+2=0\)

hay x=-10

27 tháng 8 2021

bạn làm đc câu c ko ạ?