K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2021

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

BC2=AB2+AC2BC2=AB2+AC2

⇔BC2=32+42=25⇔BC2=32+42=25

hay BC=5(cm)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

AH⋅BC=AB⋅ACAH⋅BC=AB⋅AC

⇔AH⋅5=3⋅4=12⇔AH⋅5=3⋅4=12

hay AH=2,4(cm)

23 tháng 10 2021

a, Áp dụng PTG: \(BC=\sqrt{AB^2+AC^2}=5\left(cm\right)\)

b, Vì AI là trung tuyến ứng ch BC nên \(AI=\dfrac{1}{2}BC=2,5\left(cm\right)\)

Áp dụng HTL: \(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{12}{5}=2,4\left(cm\right)\)

24 tháng 10 2021

undefined

a: BC=10cm

BH=3,6cm

9 tháng 7 2016

Áp dụng định lí Pi ta go vào tam giác vuông AHB ta có

\(AB^2=AH^2+BH^2\) =>\(BH^2=AB^2-AH^2\)=>\(BH=\sqrt{30^2-24^2}=\sqrt{324}=18\left(cm\right)\)

Áp dụng hệ thức về cạnh và đường cao trong tam giác vuông ta có 

\(AH^2=BH.CH\)=>\(HC=\frac{AH^2}{BH}\)=>\(HC=\frac{24^2}{18}=\frac{576}{18}=32\left(cm\right)\)

Ta có  \(BC=HC+HB\) => \(BC=32+18=50\left(cm\right)\)

Áp dụng hệ thức về cạnh và đường cao trong tam giác vuông ta có 

\(AC^2=BC.HC\)

=>\(AC=\sqrt{BC.HC}=\sqrt{50.32}=\sqrt{1600}=40\left(cm\right)\)*Chỗ này bạn dùng Pitago tính cũng được nha*

 

 

 

9 tháng 7 2016

Ta có góc HBD+ góc ABH = 90 độ mà góc ACH + góc ABH = 90 độ 

=> góc HBD = góc ACH 

Xét tam giác BHD và tam giác CHA có 

góc BHD = góc CHA = 90 độ

góc HBD = góc ACH (chứng minh trên)

Do đó tam giác BHD ~ tam giác CHA

=> \(\frac{BD}{BH}=\frac{AC}{HC}\)

=>\(BD=\frac{AC.BH}{HC}=\frac{18.40}{32}=\frac{720}{32}=22,5\left(cm\right)\)

 

19 tháng 10 2021

c: Xét ΔAHB vuông tại H có HM là đường cao 

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HN là đường cao 

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)

Bài 1: 

a: BC=30cm

AH=14,4(cm)

BH=10,8(cm)

a: Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HE là đường cao ứng với cạnh huyền BA, ta được:

\(AE\cdot AB=AH^2\left(1\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HF là đường cao ứng với cạnh huyền CA, ta được:

\(AF\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)

hay \(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)

Xét ΔAEF vuông tại A và ΔACB vuông tại A có 

\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)

Do đó: ΔAEF\(\sim\)ΔACB

29 tháng 8 2021

câu c đâu bạn

loading...

a: ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\)

=>HC*4=3^2=9

=>HC=2,25(cm)

BC=BH+CH

=2,25+4

=6,25(cm)

XétΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}AB^2=2,25\cdot6,25\\AC^2=4\cdot6,25\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}AB=\sqrt{2,25\cdot6,25}=3,75\left(cm\right)\\AC=\sqrt{25}=5\left(cm\right)\end{matrix}\right.\)

Xét ΔABC vuông tại A có

\(sinC=\dfrac{AB}{BC}=\dfrac{3}{5}\)

nên \(\widehat{C}\simeq37^0\)

=>\(\widehat{B}=90^0-37^0=53^0\)

b: Xét tứ giác AEHF có

\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)

=>AEHF là hình chữ nhật

=>HA=EF=3(cm)

c: ΔAHB vuông tại H có HE là đường cao

nên \(AE\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HF là đường cao

nên \(AF\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)

21 tháng 12 2021

a: BC=5cm

AH=2,4cm

BH=1,8cm

CH=3,2cm