K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2018

đề bài là j thế bn

20 tháng 8 2018

Tìm GTNN với lại câu c mình viết thiếu đề, phải là: 4x2 + 1/ x2 -20 (x>0)

21 tháng 10 2021

a: \(\left(2x-1\right)^2-2\left(2x-3\right)^2+4\)

\(=4x^2-4x+1+4-2\left(4x^2-12x+9\right)\)

\(=4x^2-4x+5-8x^2+24x-18\)

\(=-4x^2+20x-13\)

e: \(\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)=8x^3+27y^3\)

17 tháng 10 2021

a: Ta có: \(\left(2x-1\right)^2-2\left(2x-3\right)^2+4\)

\(=4x^2-4x+1-2\left(4x^2-12x+9\right)+4\)

\(=4x^2-4x+5-8x^2+24x-18\)

\(=-4x^2+20x-13\)

b: \(\left(3x+2\right)^2+2\left(3x+2\right)\left(1-2y\right)+\left(1-2y\right)^2\)

\(=\left(3x+2+1-2y\right)^2\)

\(=\left(3x-2y+3\right)^2\)

1: Ta có: \(\left(x+3\right)\left(x^2-3x+9\right)-\left(x^3+54\right)\)

\(=x^3+27-x^3-54\)

=-27

2: Ta có: \(\left(2x+y\right)\left(4x^2-2xy+y^2\right)-\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)

\(=8x^3+y^3-8x^3+y^3\)

\(=2y^3\)

18 tháng 9 2021

\(1,=x^3+270-x^3-54=-27\\ 2,=8x^3+y^3-8x^3+y^3=2y^3\\ 3,=x^3-3x^2+3x-1-x^3-8+3x^2-48=3x-57\\ 4,=x^3-x-x^3-1=-x-1\\ 5,=8x^3-5\left(8x^3+1\right)=-32x^3-5\\ 6,=27+x^3-27=x^3\\ 7,làm.ở.câu.3\\ 8,=x^3-6x^2+12x-8+6x^2-12x+6-x^3-1+3x\\ =3x-3\)

20 tháng 8 2018

\(a.P=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-32\)

\(P=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-32\)

Đặt : \(x^2+5x+5=t\) , ta có :

\(\left(t-1\right)\left(t+1\right)-32=t^2-1-32=t^2-33=\left(t-\sqrt{33}\right)\left(t+\sqrt{33}\right)\)

Thay : \(x^2+5x+5=t\) , ta có :

\(\left(x^2+5x+5-\sqrt{33}\right)\left(x^2+5x+5+\sqrt{33}\right)\)

\(b.Q=x^2-2xy+y^2+3x-3y+1=\left(x-y\right)^2-3\left(x-y\right)+1=\left(x-y\right)^2-2.\dfrac{3}{2}\left(x-y\right)+\dfrac{9}{4}+1-\dfrac{9}{4}=\left(x-y-\dfrac{3}{2}\right)^2-\dfrac{5}{4}=\left(x-y-\dfrac{3}{2}-\dfrac{\sqrt{5}}{2}\right)\left(x-y-\dfrac{3}{2}+\dfrac{\sqrt{5}}{2}\right)=\left(x-y-\dfrac{3+\sqrt{5}}{2}\right)\left(x-y+\dfrac{\sqrt{5}-3}{2}\right)\)

\(c.R=4x^2+\dfrac{1}{x^2}-20=4x^2-2.2x.\dfrac{1}{x}+\dfrac{1}{x^2}-16=\left(2x-\dfrac{1}{x}\right)^2-16=\left(2x-\dfrac{1}{x}-4\right)\left(2x-\dfrac{1}{x}+4\right)=\left(\dfrac{2x^2-1}{x}-4\right)\left(\dfrac{2x^2-1}{x}+4\right)\)

Trog những HĐT trên chắc là

bn đánh máy thiếu số mũ nhỉ??

Phải ko

23 tháng 9 2019

1.\(\left(2x+y\right)\left(4x^2-2xy+y^2\right)-\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)

\(=\left(2x\right)^3+y^3-\left(2x\right)^3+y^3=2y^3\)

2. \(2\left(2x+1\right)\left(3x-1\right)+\left(2x+1\right)^2+\left(3x-1\right)^2\)

\(=\left(2x+1+3x-1\right)^2=\left(5x\right)^2=25x^2\)

3. \(\left(x-y+z\right)^2+\left(z-y\right)^2+2\left(x-y+z\right)\left(y-z\right)\)

\(=\left(x-y+z+y-z\right)^2=x^2\)

4. \(\left(x-3\right)\left(x+3\right)-\left(x-3\right)^2\)

\(=\left(x-3\right)\left(x+3-x+3\right)=6\left(x-3\right)\)

5. \(\left(x^2-1\right)\left(x+2\right)-\left(x-2\right)\left(x^2+2x+4\right)\)

\(=x^3+2x^2-x-2-x^3+y^3=2x^2-x-2+y^3\)

6. Áp dụng các hằng đẳng thức đáng nhớ

21 tháng 8 2023

a) \(A=\left(x+2\right)\left(x^2-2x+4\right)-x^3+2\)

\(A=x^3+8-x^3+2\)

\(A=10\)

b) \(B=\left(x-1\right)\left(x^2+x+1\right)-\left(x+1\right)\left(x^2-x+1\right)\)

\(B=x^3-1-\left(x^3+1\right)\)

\(B=x^3-1-x^3-1\)

\(B=-2\)

c) \(C=\left(2x-y\right)\left(4x^2+2xy+y^2\right)+\left(y-3x\right)\left(y^2+3xy+9x^2\right)\)

\(C=\left(2x\right)^3-y^3+y^3-\left(3x\right)^3\)

\(C=8x^3-y^3+y^3-27x^3\)

\(C=-19x^3\)

21 tháng 8 2023

a)

\(A=\left(x+2\right)\left(x-2\right)\left(x-2\right)-x^3+2\\ =\left(x^2-4\right)\left(x-2\right)-x^3+2\\ =x^3-2x^2-4x+8-x^3+2\\ =-2x^2-4x+10\)

b)

\(B=x^3-1-\left(x^3+1\right)\\ =x^3-1-x^3-1\\ =-2\)

c)

\(C=\left(2x\right)^3-y^3+\left(y\right)^3-\left(3x\right)^3\\ =8x^3-y^3+y^3-27x^3\\ =-19x^3\)

10 tháng 10 2021

\(4x^2-1=\left(2x-1\right)\left(2x+1\right)\)

\(x\left(x+y\right)-6x-6y=\left(x+y\right)\left(x-6\right)\)

\(x^2-2xy+y^2-z^2=\left(x-y-z\right)\left(x-y+z\right)\)

\(9x^2-\dfrac{1}{4}=\left(3x-\dfrac{1}{2}\right)\left(3x+\dfrac{1}{2}\right)\)

29 tháng 9 2023

a) \(\dfrac{1}{x^3-8}=\dfrac{1}{\left(x-2\right)\left(x^2+2x+4\right)}=\dfrac{2}{2\left(x-2\right)\left(x^2+2x+4\right)}\)

\(\dfrac{3}{4-2x}=\dfrac{-3}{2\left(x-2\right)}=\dfrac{-3\left(x^2+2x+4\right)}{2\left(x-2\right)\left(x^2+2x+4\right)}\)

b) \(\dfrac{x}{x^2-1}=\dfrac{x}{\left(x+1\right)\left(x-1\right)}=\dfrac{x\left(x+1\right)}{\left(x+1\right)^2\left(x-1\right)}\)

\(\dfrac{1}{x^2+2x+1}=\dfrac{1}{\left(x+1\right)^2}=\dfrac{x-1}{\left(x+1\right)^2\left(x-1\right)}\)

c) \(\dfrac{1}{x+2}=\dfrac{\left(x-2\right)^2}{\left(x+2\right)\left(x-2\right)^2}\)

\(\dfrac{1}{x^2-4x+4}=\dfrac{1}{\left(x-2\right)^2}=\dfrac{x+2}{\left(x+2\right)\left(x-2\right)^2}\)

\(\dfrac{5}{2-x}=\dfrac{-5}{x-2}=\dfrac{-5\left(x+2\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)^2}\)

d) \(\dfrac{1}{3x+3y}=\dfrac{1}{3\left(x+y\right)}=\dfrac{\left(x-y\right)^2}{3\left(x+y\right)\left(x-y\right)^2}\)

\(\dfrac{2x}{x^2-y^2}=\dfrac{2x}{\left(x+y\right)\left(x-y\right)}=\dfrac{6x\left(x-y\right)}{3\left(x+y\right)\left(x-y\right)^2}\)

\(\dfrac{x^2-xy+y^2}{x^2-2xy+y^2}=\dfrac{x^2-xy+y^2}{\left(x-y\right)^2}=\dfrac{3\left(x^2-xy+y^2\right)\left(x+y\right)}{3\left(x+y\right)\left(x-y\right)^2}=\dfrac{3\left(x^3+y^3\right)}{3\left(x+y\right)\left(x-y\right)^2}\)

29 tháng 9 2023

phần c là x+1 / x2 - 4x +4 mà bn

8 tháng 2 2023

bạn tách từng bài ra bn

8 tháng 2 2023

cùng 1 bài mà