Tính giá trị biểu thức
\(\frac{5}{12}-|-12|-4.\sqrt{\frac{25}{16}}+2015^0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=4\frac{1}{3}-\sqrt{16}+5\sqrt{\frac{4}{9}}-\frac{25}{\left(\sqrt{6}\right)^2}\)
\(=\frac{13}{3}-4+5\cdot\frac{2}{3}-\frac{25}{6}\)
\(=\frac{1}{3}+\frac{10}{3}-\frac{25}{6}\)
\(=\frac{11}{3}-\frac{25}{6}\)
\(=-\frac{1}{2}\)
tính giá trị của biểu thức \(\left(\sqrt{\frac{3}{4}}-\sqrt{3}+5\sqrt{\frac{4}{3}}\right)\sqrt{12}\)
\(\left(\sqrt{\frac{3}{4}}-\sqrt{3}+5\cdot\sqrt{\frac{4}{3}}\right)\sqrt{12}.\)
\(=\left(\frac{\sqrt{3}}{\sqrt{4}}-\sqrt{3}+5\cdot\frac{\sqrt{4}}{\sqrt{3}}\right)\sqrt{12}.\)
\(=\left(\frac{\sqrt{3}}{2}-\sqrt{3}+5\cdot\frac{2}{\sqrt{3}}\right)\sqrt{12}.\)
\(=\left(\frac{1}{2}\cdot\sqrt{3}-\sqrt{3}+5\cdot\frac{2}{\sqrt{3}}\right)\sqrt{12}.\)
\(=\left(-\frac{1}{2}\sqrt{3}+\frac{10}{\sqrt{3}}\right)\sqrt{12}\)
\(=\left(-\frac{1}{2}\sqrt{3}+\frac{10}{3}\sqrt{3}\right)\sqrt{12}\)
\(=\frac{17}{6}\sqrt{3}\sqrt{12}=\frac{17}{6}\sqrt{36}=\frac{17}{6}\cdot6=17\)
\(\Rightarrow\left(\sqrt{\frac{3}{4}}-\sqrt{3}+5\cdot\sqrt{\frac{4}{3}}\right)\sqrt{12}=17\)
a,\(=\left(\frac{3}{5}x+\frac{2}{7}y\right)^2=\left(\frac{3}{5}.5+\frac{2}{7}.\left(-7\right)\right)^2=0\)
\(b,=\left(\frac{5}{4}u^2v+\frac{2}{25}v^2\right)^2=\left(\frac{5}{4}.\left(\frac{2}{5}\right)^2.5+\frac{2}{25}.5^2\right)^2=3^2=9\)
Bài làm
* Gợi ý:
Bước 1: Bạn hãy tính trong ngoặc theo thứ tự ngoặc vuông bên trong, xong đến ngoặc nhọn bên ngoài. Bạn chỉ cần đưa hỗn số thành phân số bằng cách lấy phân nguyên nhân với mẫu số rồi cộng tử số, bn đưa số thập phân về phân số.
Bước 2: Phá ngoặc rồi rút gọn và tính như bình thường
Bước 3: Kết luận " Vậy giá trị của biểu thức P = ..... "
~ Mik lười quá không mún làm, mak mik lm thì bn sẽ ỉ lại trên này giải bài cho bn nên mik chỉ gọi ý cho bn bt, còn bạn tự làm, ~
# Chúc bạn học tốt #
\(A = \cos {75^0}\cos {15^0} = \frac{1}{2}\left[ {\cos \left( {{{75}^0} - {{15}^0}} \right) + \cos \left( {{{75}^0} + {{15}^0}} \right)} \right] \\= \frac{1}{2}.\cos {60^0}.\cos {90^0} = 0\)
\(B = \sin \frac{{5\pi }}{{12}}\cos \frac{{7\pi }}{{12}} = \frac{1}{2}\left[ {\sin \left( {\frac{{5\pi }}{{12}} - \frac{{7\pi }}{{12}}} \right) + \sin \left( {\frac{{5\pi }}{{12}} + \frac{{7\pi }}{{12}}} \right)} \right] \\= \frac{1}{2}\sin \left( { - \frac{{2\pi }}{{12}}} \right).\sin \left( {\frac{{12\pi }}{{12}}} \right) = - \frac{1}{2}\sin \frac{\pi }{6}\sin \pi = 0\)
\(\frac{5}{12}-\left|-12\right|-4\cdot\sqrt{\frac{25}{16}}+2015^0\)
\(=\frac{5}{12}-12-4\cdot\frac{5}{4}+1\)
\(=\frac{5}{12}-\frac{144}{12}-\frac{60}{12}+\frac{12}{12}\)
\(=\frac{5-144-60+12}{12}\)
\(=\frac{-187}{12}\)