K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2021

O B A C D

Theo đề ra OA = OB => \(\Delta OAB\) cân tại O => \(\widehat{OAB}=\widehat{OBA}\)

Ta có \(\widehat{OCD}=\widehat{OAB}=\widehat{OBA}=\widehat{ODC}\)

\(\Rightarrow\Delta OCD\) cân tại O \(\Rightarrow OC=OD\)

\(\Rightarrow AC=OA+OC=OB+OD=BD\)

Hình thang ABCD có hai đường chéo AB và BD bằng nhau nên ABCD là hình thang cân

Bài 1: Cho hình thang cân ABCD ( AB // CD) Gọi E là giao điểm của AC và BD. Chứng minh EA = EB.Bài 2: Cho hình thang cân ABCD (AB//CD) có AB=3,BC=CD=13(cm). Kẻ các đường cao AK và BH. a) Chứng minh rằng CH=DK. b) Tính độ dài BH.Bài 3: Hình thang cân ABCD (AB//CD) có Cˆ=600, DB là tia phân giác của góc D, AB=4cm.a) Chứng minh rằng BD vuông góc với BC. b) Tính chu vi hình thang.Bài 4 : Cho hình thang MNPQ (MN là đáy nhỏ) có 2...
Đọc tiếp

Bài 1: Cho hình thang cân ABCD ( AB // CD) Gọi E là giao điểm của AC và BD. Chứng minh EA = EB.

Bài 2: Cho hình thang cân ABCD (AB//CD) có AB=3,BC=CD=13(cm). Kẻ các đường cao AK và BH.

a) Chứng minh rằng CH=DK.

b) Tính độ dài BH.

Bài 3: Hình thang cân ABCD (AB//CD) có Cˆ=600, DB là tia phân giác của góc D, AB=4cm.

a) Chứng minh rằng BD vuông góc với BC.

b) Tính chu vi hình thang.

Bài 4 : Cho hình thang MNPQ (MN là đáy nhỏ) có 2 đường chéo MP và NQ cắt nhau tại O và NMPˆ=MNQˆA.

a) Chứng minh tam giác OMN và OPQ cân tại O.

b) Chứng minh tứ giác MNPQ là hình thang cân.

c) Qua O vẽ đường thẳng EF//QP (E∈MQ,F∈NP). Chứng minh MNFE, FEQP là những hình thang cân.

Bài 5: Cho hình thang cân ABCD (AB//CD, AB < CD). AD cắt BC tại O.

a) Chứng minh rằng ΔOAB cân.

b) Gọi I, J lần lượt là trung điểm của AB và CD. Chứng minh rằng ba điểm I, J, O thẳng hàng.

c) Qua điểm M thuộc cạnh AC, vẽ đường thẳng song song với CD, cắt BD tại N. Chứng minh rằng MNAB, MNDC là các hình thang cân.

1

Bài 1: 

Xét ΔABC và ΔBAD có 

AB chung

BC=AD

AC=BD

Do đó: ΔABC=ΔBAD

Suy ra: \(\widehat{BAC}=\widehat{ABD}\)

hay \(\widehat{EAB}=\widehat{EBA}\)

hay ΔEAB cân tại E

Bài 1: 

\(S=\dfrac{12+20}{2}\cdot8=16\cdot8=128\left(cm^2\right)\)

27 tháng 12 2024

           Bài 2:

Vì ABCD là hình thang cân (gt)

Suy ra: BD = AC  (hình thang cân có hai đường chéo bằng nhau)

BD = 5cm (gt)

AC = 3cm (gt)

5cm > 3cm 

Suy ra BD > AC (vô lí)

Vậy không tồn tại hình thang cân nào thỏa mãn đề bài. 

 

 

 

a: Xét ΔADC và ΔBCD có

AD=BC

AC=BD

DC chung

Do đó: ΔADC=ΔBCD

Suy ra: \(\widehat{ACD}=\widehat{BDC}\)

hay \(\widehat{ODC}=\widehat{OCD}\)

Xét ΔOCD có \(\widehat{ODC}=\widehat{OCD}\)

nên ΔCOD cân tại O

26 tháng 11 2017

Vì hình thang ABCD có AC ^ BD Þ SABCD = 0.5.AC.BD