Tìm các số tự nhiên a, b sao cho (2008.a+3.b+1).(\(2008^a+2008.a+b\))=225
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
225 là số lẻ nên 2008a+3b+1 và 2008a+2008a+b là số lẻ.
+ Nếu a≠0 thì 2008a+2008a nhận giá trị là 1 số chẵn. Để 2008a+2008a+b nhận giá trị lẻ thì b nhận giá trị lẻ
⟹3b nhận giá trị lẻ
⟹2008a+3b+1 nhận giá trị chẵn (vô lí)
+ Nếu a=0 thay vào ta có:
(2008.0+3b+1).(20080+2008.0+b)=225
⟹(3b+1)(1+b)=225=225.1=75.3=45.5=25.9=15.15
+ Ta có b là STN nên 3b+1>b+1 và 3b+1 chia 3 dư 1. Như vậy 3b+1=25; b+1=9
⟹b=8
Vậy a=0; b=8
225 là số lẻ nên 2008a+3b+1 và 2008a+2008a+b là số lẻ.
+ Nếu a≠0 thì 2008a+2008a nhận giá trị là 1 số chẵn. Để 2008a+2008a+b nhận giá trị lẻ thì b nhận giá trị lẻ
⟹3b nhận giá trị lẻ
⟹2008a+3b+1 nhận giá trị chẵn (vô lí)
+ Nếu a=0 thay vào ta có:
(2008.0+3b+1)(2008.0+2008.0+b)=225
⟹(3b+1)(1+b)=225=225.1=75.3=45.5=25.9=15.15
+ Ta có b là số tự nhiên nên 3b+1>b+1 và 3b+1 chia 3 dư 1. Như vậy 3b+1=25; b+1=9
⟹b=8
Vậy a=0; b=8