Tìm x,y ϵ Z+,biết :
(x+5)(y+6)=3xy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$\frac{5}{x}-\frac{y}{3}=\frac{1}{6}$
$\Rightarrow \frac{15-xy}{3x}=\frac{1}{6}$
$\Rightarrow \frac{2(15-xy)}{6x}=\frac{x}{6x}$
$\Rightarrow 2(15-xy)=x$
$\Rightarrow 30=2xy+x$
$\Rightarrow 30=x(2y+1)$
$\Rightarrow x=\frac{30}{2y+1}$
Vì $x$ nguyên nên $\frac{30}{2y+1}$ nguyên
$\Rightarrow 2y+1$ là ước của $30$
Vì $2y+1$ lẻ nên $2y+1\in\left\{\pm 1; \pm 3; \pm 5; \pm 15\right\}$
$\Rightarrow y\in\left\{-1; 0; -2; 1; -3; 2; -8; 7\right\}$
Tương ứng với các giá trị $y$ trên ta có: $x\in\left\{-30; 30; -10; 10; -6; 6; -2;2\right\}$
Từ 3 phương trình trên
\(\left(x+y+z\right)=\dfrac{-5}{x}=\dfrac{9}{y}=\dfrac{5}{z}=\dfrac{-5+9+5}{x+y+z}=\dfrac{9}{x+y+z}\)
\(\Rightarrow\left(x+y+z\right)^2=9\Rightarrow\left(x+y+z\right)=\pm3\)
+ Với \(x+y+z=3\) Thay vào từng phương trình ta có
\(x=-\dfrac{5}{3};y=3;z=\dfrac{5}{3}\)
+ Với \(x+y+z=-3\) Thay vào từng phương trình có
\(x=\dfrac{5}{3};y=3;z=-\dfrac{5}{3}\)
Ta thấy (x+1)(2y-5)=143=11.13=13.11=143.1=1.143
Suy ra ta có 4 trường hợp sau:
-Nếu x+1=11suy ra x=10 ; 2y-5=13 suy ra y=9
-Nếu x+1=13 suy ra x=12 ; 2y-5=11 suy ra y=8
-Nếu x+1=143 suy ra x=142 ; 2y-5=1 suy ra y=3
-Nếu x+1=1 suy ra x=0 ; 2y-5=143 suy ra y=74
Vậy x=10 thì y=9
x=12 thì y=8
x=142 thì y=3
x=0 thì y=74
Ta có: \(\left(x+2\right)^2+4\ge4\Rightarrow\dfrac{20}{3\left|y+2\right|+5}\ge4\)
\(\Rightarrow3\left|y+2\right|+5\le5\)
\(\Rightarrow\left|y+2\right|=0\Rightarrow y=-2\)
Vậy x=y=-2
a, \(x,y\in Z\Rightarrow\left\{{}\begin{matrix}x-3,2y-6\in Z\\x-3,2y-6\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\end{matrix}\right.\)
Ta có bảng:
x-3 | -1 | -5 | 1 | 5 |
2y-6 | -5 | -1 | 5 | 1 |
x | 2 | -2 | 4 | 8 |
y | \(\dfrac{1}{2}\left(loại\right)\) | \(\dfrac{5}{2}\left(loại\right)\) | \(\dfrac{11}{2}\left(loại\right)\) | \(\dfrac{7}{2}\left(loại\right)\) |
Vậy không có x,y thỏa mãn đề bài
b, tương tự câu a
\(c,xy-5x+2y=7\\ \Rightarrow x\left(y-5\right)+2y-10=-3\\ \Rightarrow x\left(y-5\right)+2\left(y-5\right)=-3\\ \Rightarrow\left(x+2\right)\left(y-5\right)=-3\)
Rồi làm tương tự câu a
\(d,xy-3x-4y=5\\ \Rightarrow x\left(y-3\right)-4y+12=17\\ \Rightarrow x\left(y-3\right)-4\left(y-3\right)=17\\ \Rightarrow\left(x-4\right)\left(y-3\right)=17\)
Rồi làm tương tự câu a
Tìm x, y, z biết:\(\sqrt{\left(x-2024\right)^2}\) + ∣ x+ y -4z ∣ + \(\sqrt{5y^2}\) = 0 với x,y,z ϵ R
Lời giải:
Ta thấy: $\sqrt{(x-2024)^2}\geq 0$ với mọi $x\in\mathbb{R}$
$|x+y-4z|\geq 0$ với mọi $x,y,z\in\mathbb{R}$
$\sqrt{5y^2}\geq 0$ với mọi $y\in\mathbb{R}$
Do đó để tổng của chúng bằng $0$ thì bản thân mỗi số đó phải nhận giá trị $0$
Hay:
$\sqrt{(x-2024)^2}=|x+y-4z|=\sqrt{5y^2}=0$
$\Leftrightarrow x=2024; y=0; z=\frac{x+y}{4}=506$
Lời giải:
$2x-3xy-6y=16$
$\Rightarrow x(2-3y)-6y=16$
$\Rightarrow x(2-3y)+2(2-3y)=20$
$\Rightarrow (x+2)(2-3y)=20$
Vì $x,y\in\mathbb{N}$ nên $x+2\in N\Rightarrow x+2>0$
Mà $(x+2)(2-3y)=20>0$ nên $2-3y>0$
Mà $2-3y\leq 2-3.0=2$ với mọi $y\in\mathbb{N}, 2-3y$ lẻ nên $2-3y=1$
$\Rightarrow x+2=20; 2-3y=1$
$\Rightarrow x=18; y=\frac{1}{3}$ (loại)
Vậy không tìm được $x,y$ thỏa đề.