K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
20 tháng 2 2023

Lời giải:

$\frac{5}{x}-\frac{y}{3}=\frac{1}{6}$

$\Rightarrow \frac{15-xy}{3x}=\frac{1}{6}$

$\Rightarrow \frac{2(15-xy)}{6x}=\frac{x}{6x}$

$\Rightarrow 2(15-xy)=x$

$\Rightarrow 30=2xy+x$

$\Rightarrow 30=x(2y+1)$

$\Rightarrow x=\frac{30}{2y+1}$

Vì $x$ nguyên nên $\frac{30}{2y+1}$ nguyên

$\Rightarrow 2y+1$ là ước của $30$

Vì $2y+1$ lẻ nên $2y+1\in\left\{\pm 1; \pm 3; \pm 5; \pm 15\right\}$

$\Rightarrow y\in\left\{-1; 0; -2; 1; -3; 2; -8; 7\right\}$

Tương ứng với các giá trị $y$ trên ta có: $x\in\left\{-30; 30; -10; 10; -6; 6; -2;2\right\}$

11 tháng 7 2023

Từ 3 phương trình trên

\(\left(x+y+z\right)=\dfrac{-5}{x}=\dfrac{9}{y}=\dfrac{5}{z}=\dfrac{-5+9+5}{x+y+z}=\dfrac{9}{x+y+z}\)

\(\Rightarrow\left(x+y+z\right)^2=9\Rightarrow\left(x+y+z\right)=\pm3\)

+ Với \(x+y+z=3\) Thay vào từng phương trình ta có

\(x=-\dfrac{5}{3};y=3;z=\dfrac{5}{3}\)

+ Với \(x+y+z=-3\) Thay vào từng phương trình có

\(x=\dfrac{5}{3};y=3;z=-\dfrac{5}{3}\)

11 tháng 7 2023

Sorry trường hợp thứ 2 \(y=-3\)

17 tháng 12 2022

Ta thấy (x+1)(2y-5)=143=11.13=13.11=143.1=1.143

Suy ra ta có 4 trường hợp sau:

-Nếu x+1=11suy ra x=10 ; 2y-5=13 suy ra y=9

-Nếu x+1=13 suy ra x=12 ; 2y-5=11 suy ra y=8

-Nếu x+1=143 suy ra x=142 ; 2y-5=1 suy ra y=3

-Nếu x+1=1 suy ra x=0 ; 2y-5=143 suy ra y=74 

Vậy x=10 thì y=9

       x=12 thì y=8

       x=142 thì y=3

       x=0 thì y=74

10 tháng 2 2020

( x - 5 ) ( y - 7 ) = 1

Mà x ,y nguyên

Nên ta có bảng sau

x -   5        1             -1
 y - 7       1               -1
x       6            4
y       8        6

=> Các cặp số nguyên ( x;y) thỏa mãn đề bài là : ( 6;8) ; (4 ; 6 )
Vậy cặp số nguyên ( x;y) thỏa mãn đề bài là : ( 6;8) ; (4 ; 6 )

@@ Học tốt @@
## Chiyuki Fujito

20 tháng 2 2021

Ta có: \(\left(x+2\right)^2+4\ge4\Rightarrow\dfrac{20}{3\left|y+2\right|+5}\ge4\)

\(\Rightarrow3\left|y+2\right|+5\le5\)

\(\Rightarrow\left|y+2\right|=0\Rightarrow y=-2\)

Vậy x=y=-2

11 tháng 1 2022

a, \(x,y\in Z\Rightarrow\left\{{}\begin{matrix}x-3,2y-6\in Z\\x-3,2y-6\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\end{matrix}\right.\)

Ta có bảng:

x-3-1-515
2y-6-5-151
x2-248
y\(\dfrac{1}{2}\left(loại\right)\)\(\dfrac{5}{2}\left(loại\right)\)\(\dfrac{11}{2}\left(loại\right)\)\(\dfrac{7}{2}\left(loại\right)\)

Vậy không có x,y thỏa mãn đề bài 

b, tương tự câu a

 \(c,xy-5x+2y=7\\ \Rightarrow x\left(y-5\right)+2y-10=-3\\ \Rightarrow x\left(y-5\right)+2\left(y-5\right)=-3\\ \Rightarrow\left(x+2\right)\left(y-5\right)=-3\)

Rồi làm tương tự câu a

\(d,xy-3x-4y=5\\ \Rightarrow x\left(y-3\right)-4y+12=17\\ \Rightarrow x\left(y-3\right)-4\left(y-3\right)=17\\ \Rightarrow\left(x-4\right)\left(y-3\right)=17\)

Rồi làm tương tự câu a

 

AH
Akai Haruma
Giáo viên
6 tháng 11 2023

Lời giải:

Ta thấy: $\sqrt{(x-2024)^2}\geq 0$ với mọi $x\in\mathbb{R}$

$|x+y-4z|\geq 0$ với mọi $x,y,z\in\mathbb{R}$

$\sqrt{5y^2}\geq 0$ với mọi $y\in\mathbb{R}$

Do đó để tổng của chúng bằng $0$ thì bản thân mỗi số đó phải nhận giá trị $0$

Hay:
$\sqrt{(x-2024)^2}=|x+y-4z|=\sqrt{5y^2}=0$

$\Leftrightarrow x=2024; y=0; z=\frac{x+y}{4}=506$

AH
Akai Haruma
Giáo viên
30 tháng 10 2023

Lời giải:

$2x-3xy-6y=16$

$\Rightarrow x(2-3y)-6y=16$

$\Rightarrow x(2-3y)+2(2-3y)=20$

$\Rightarrow (x+2)(2-3y)=20$

Vì $x,y\in\mathbb{N}$ nên $x+2\in N\Rightarrow x+2>0$

Mà $(x+2)(2-3y)=20>0$ nên $2-3y>0$

Mà $2-3y\leq 2-3.0=2$ với mọi $y\in\mathbb{N}, 2-3y$ lẻ nên $2-3y=1$

$\Rightarrow x+2=20; 2-3y=1$

$\Rightarrow x=18; y=\frac{1}{3}$ (loại)

Vậy không tìm được $x,y$ thỏa đề.