K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2018

post ít một thôi

27 tháng 1 2019

Dùng BĐT quen thuộc: \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) nhé! Một dòng là đủ.

\(\frac{1}{\left(4a^2+4b^2\right)}+\frac{1}{8ab}\ge\frac{4}{4a^2+8ab+4b^2}==\frac{4}{4\left(a^2+2ab+a^2\right)}=\frac{1}{\left(a+b\right)^2}^{\left(đpcm\right)}\)

27 tháng 1 2019

Dấu "=" xảy ra \(\Leftrightarrow\frac{1}{4a^2+4b^2}=\frac{1}{8ab}\Leftrightarrow4a^2+4b^2=8ab\Leftrightarrow a=b\)

2 tháng 7 2016

Bài 1:

Đặt \(a^2=x;b^2=y;c^2=z\)

Ta có:\(\sqrt{\frac{x}{x+y}}+\sqrt{\frac{y}{y+z}}+\sqrt{\frac{z}{z+x}}\le\frac{3}{\sqrt{2}}\)

Áp dụng BĐT cô si ta có:

\(\sqrt{\frac{x}{x+y}}=\frac{1}{\sqrt{2}}\sqrt{\frac{4x\left(x+y+z\right)}{3\left(x+y\right)\left(x+z\right)}\frac{3\left(x+z\right)}{2\left(x+y+z\right)}}\)

\(\le\frac{1}{2\sqrt{2}}\left[\frac{4x\left(x+y+z\right)}{3\left(x+y\right)\left(x+z\right)}+\frac{3\left(x+z\right)}{2\left(x+y+z\right)}\right]\)

Tương tự với \(\sqrt{\frac{y}{y+z}}\)và \(\sqrt{\frac{z}{z+x}}\)

Cộng lại ta được:

\(\frac{\sqrt{2}}{3}\left[\frac{x\left(x+y+z\right)}{\left(x+y\right)\left(x+z\right)}+\frac{y\left(x+y+z\right)}{\left(y+z\right)\left(y+x\right)}+\frac{z\left(x+y+z\right)}{\left(z+x\right)\left(z+y\right)}\right]+\frac{3}{2\sqrt{2}}\le\frac{3}{2\sqrt{2}}\)

Sau đó bình phương hai vế rồi

\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge8xyz\)đẳng thức đúng

Vậy...

Bài 2:

Trước hết ta chứng minh bất đẳng thức sau:

\(\frac{a}{4a+4b+c}+\frac{b}{4b+4c+a}+\frac{c}{4c+4a+b}\le\frac{1}{3}\)

Nhân cả hai vế bđt với 4(a+b+c)4(a+b+c) rồi thu gọn ta được bđt sau: 

\(\frac{4a\left(a+b+c\right)}{4a+4b+c}+\frac{4b\left(a+b+c\right)}{4b+4c+a}+\frac{4c\left(a+b+c\right)}{4c+4a+b}\)\(\le\frac{4}{3}\left(a+b+c\right)\)

\(\left[\frac{4a\left(a+b+c\right)}{4a+4b+}-a\right]+\left[\frac{4b\left(a+b+c\right)}{4b+4c+a}-b\right]+\left[\frac{4c\left(a+b+c\right)}{4c+4a+b}-c\right]\le\frac{a+b+c}{3}\)

\(\frac{ca}{4a+4b+c}+\frac{ab}{4b+4c+a}+\frac{bc}{4c+4a+b}\le\frac{a+b+c}{9}\)

Áp dụng bđt cauchy-Schwarz ta có \(\frac{ca}{4a+4b+c}=\frac{ca}{\left(2b+c\right)+2\left(2a+b\right)}\)\(\le\frac{ca}{9}\left(\frac{1}{2b+c}+\frac{2}{2a+b}\right)\)

Từ đó ta có:

\(\text{∑}\frac{ca}{4a+4b+c}\le\frac{1}{9}\text{∑}\left(\frac{ca}{2b+c}+\frac{2ca}{2a+b}\right)\)\(=\frac{1}{9}\left(\text{ ∑}\frac{ca}{2b+c}+\text{ ∑}\frac{2ca}{2a+b}\right)\)\(=\frac{1}{9}\left(\text{ ∑}\frac{ca}{2b+c}+\text{ ∑}\frac{2ab}{2b+c}\right)=\frac{a+b+c}{9}\)

Đặt VT=A rồi áp dụng bđt cauchy-Schwarz cho VT ta có 

\(T^2\le3\left(\frac{a}{4a+4b+c}+\frac{b}{4b+4c+a}+\frac{c}{4c+4a+b}\right)\)\(\le3\cdot\frac{1}{3}=1\Leftrightarrow T\le1\)

Dấu = xảy ra khi a=b=c 

c bạn tự làm nhé mình mệt rồi :D

2 tháng 7 2016

- Ôi má ơi, má patient dử dậy :)

19 tháng 8 2018

bạn vào link https://alfazi.edu.vn/question/5b78c797e5cde951c7e8307d Tham gia trả lời câu hỏi để nhận được những phần quà hấp dẫn đến từ Alfazi như: xu, balo, áo, giày,... và các dụng cụ học tập khác nhé

Rồi bạn trả lời"được bạn My Love mời"cám ơn bn

AH
Akai Haruma
Giáo viên
27 tháng 12 2018

Lời giải:

Do $abc=1$ nên tồn tại $x,y,z>0$ sao cho:\((a,b,c)=\left(\frac{x}{y}, \frac{y}{z}, \frac{z}{x}\right)\)

Bài toán trở thành:

Cho $x,y,z>0$. CMR: \(\frac{x^4}{yz(x^2+y^2)}+\frac{y^4}{xz(y^2+z^2)}+\frac{z^4}{xy(z^2+x^2)}\geq \frac{3}{2}\)

Thật vậy, áp dụng BĐT Cauchy-Schwarz:

\(\frac{x^4}{yz(x^2+y^2)}+\frac{y^4}{xz(y^2+z^2)}+\frac{z^4}{xy(z^2+x^2)}=\frac{x^6}{x^2yz(x^2+y^2)}+\frac{y^6}{y^2xz(y^2+z^2)}+\frac{z^6}{z^2xy(z^2+x^2)}\)

\(\geq \frac{(x^3+y^3+z^3)^2}{x^2yz(x^2+y^2)+y^2xz(y^2+z^2)+z^2xy(z^2+x^2)}=\frac{(x^3+y^3+z^3)^2}{xyz(x^3+y^3+z^3+xy^2+yz^2+zx^2)}(*)\)

Áp dụng BĐT AM-GM:

\(x^3+y^3+z^3\geq 3xyz\Rightarrow \frac{x^3+y^3+z^3}{3}\geq xyz(1)\)

Và:

\(x^3+y^3+y^3\geq 3xy^2; y^3+z^3+z^3\geq 3yz^2; z^3+x^3+x^3\geq 3zx^2\)

Cộng theo vế và rút gọn \(\Rightarrow x^3+y^3+z^3\geq xy^2+yz^2+zx^2\)

\(\Rightarrow 2(x^3+y^3+z^3)\geq x^3+y^3+z^3+xy^2+yz^2+zx^2(2)\)

Từ \((1);(2)\Rightarrow \frac{2}{3}(x^3+y^3+z^3)^2\geq xyz(x^3+y^3+z^3+xy^3+yz^2+zx^2)(**)\)

Từ \((*);(**)\Rightarrow \frac{x^4}{yz(x^2+y^2)}+\frac{y^4}{xz(y^2+z^2)}+\frac{z^4}{xy(z^2+x^2)}\geq \frac{(x^3+y^3+z^3)^2}{\frac{2}{3}(x^3+y^3+z^3)^2}=\frac{3}{2}\) (đpcm)

Dấu "=" xảy ra khi $x=y=z$ hay $a=b=c=1$