tính nhanh 2020 x 2020 - 2022 x 2018
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
( x - 1 )2018 + ( y + 3 )2020 + ( z - 5 )2022 = 0
Ta thấy : ( x - 1 )2018 \(\ge0\) ; ( y + 3 )2020 \(\ge0\) ; ( z - 5 )2022 \(\ge0\)
\(\Rightarrow\left(x-1\right)^{2018}+\left(y+3\right)^{2020}+\left(z-5\right)^{2022}\ge0\)
Theo đề,ta có : \(\left(x-1\right)^{2018}=\left(y+3\right)^{2020}=\left(z-5\right)^{2022}=0\)
+) \(\left(x-1\right)^{2018}=0\Rightarrow x-1=0\Rightarrow x=1\)
+) \(\left(y+3\right)^{2020}=0\Rightarrow y+3=0\Rightarrow y=-3\)
=) \(\left(z-5\right)^{2022}=0\Rightarrow z-5=0\Rightarrow z=5\)
Vậy : x = 1 ; y = -3 ; z = 5
\(\text{Ta có:}\)
\(\hept{\begin{cases}\left(x-1\right)^{2018}\ge0\\\left(y+3\right)^{2020}\ge0\\\left(z-5\right)^{2022}\ge0\end{cases}}\text{mà:}\left(x-1\right)^{2018}+\left(y-2\right)^{2020}+\left(z-3\right)^{2022}=0\text{ nên:}\)
\(\hept{\begin{cases}\left(x-1\right)^{2018}=0\\\left(y+3\right)^{2018}=0\\\left(z-5\right)^{2018}=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=-3\\z=5\end{cases}}\)
bạn tự kết luận
\(\left(1-\frac{1}{2018}\right)\times\left(1-\frac{1}{2019}\right)\times\left(1-\frac{1}{2020}\right)\times\left(1-\frac{1}{2021}\right)\times\left(1-\frac{1}{2022}\right)\)
\(=\frac{2017}{2018}\times\frac{2018}{2019}\times\frac{2019}{2020}\times\frac{2020}{2021}\times\frac{2021}{2022}\)
\(=\frac{2017}{2022}\)
\(\Leftrightarrow\left(\dfrac{x+1}{2022}+1\right)+\left(\dfrac{x+3}{2020}+1\right)+\left(\dfrac{x+5}{2018}+1\right)+\left(\dfrac{x+7}{2016}+1\right)=0\)
=>x+2023=0
=>x=-2023
bn tham khảo link này nhé
https://olm.vn/hoi-dap/tim-kiem?id=1300742&subject=1&q=++++++++++kh%C3%B4ng+t%C3%ADnh+k%E1%BA%BFt+qu%E1%BA%A3+c%E1%BB%A5+th%E1%BB%83+h%C3%A3y+so+s%C3%A1nh+a+v%C3%A0+b+++a=+2020+.+2020b=+2018+.+2022+++++++++
a) A= 2018 x 2022 và B= 2020 x 2020
ta có :
A=2018.2022=2020.2022-2.2022
=2020.2020+2020.2-2.2022
=2020.2020+2(2020-2022)
=2020.2020-4=B-4
=>A=B-4
hay B > A 4 đơn vị
Lời giải:
Sử dụng BĐT sau:
Cho $a,b$ thực. Khi đó $|a|+|b|\geq |a+b|$. Dấu "=" xảy ra khi $ab\geq 0$. Áp dụng vào bài toán:
$|x-2018|+|x-2022|=|x-2018|+|2022-x|\geq |x-2018+2022-x|=4$
$|x-2020|\geq 0$ (theo tính chất trị tuyệt đối)
$\Rightarrow A\geq 4+0=4$
Vậy GTNN của $A$ là $4$. Giá trị này đạt được khi $(x-2018)(2022-x)\geq 0$ và $x-2020=0$
Hay khi $x=2020$
2020 x 2020 - 2022 x 2018
= (2020 -x 2020) - (2022 - 2018)
= 04