Cho các số hửu tỉ A<B<C<D. Chứng minh rằng nếuA<B, C<D thì A-D<B-C
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Nếu a;b cùng dấu => a; b cùng dương hoặc a;b cùng âm
+) a;b cùng dương => a/b dương
+) a;b cùng âm => a/b dương
Vậy a/b là số hữu tỉ dương
b) Nếu a;b trái dấu => a dương;b âm hoặc a âm và b dương
cả 2 trường hợp a/b đều < 0
=> a/b là số hữu tỉ âm
a / Nếu a, b cùng dấu thì a/b sẽ có dạng +a / +b ( là số hữu tỉ dương )
hoặc -a / -b ( là số hữu tỉ dương )
=> Vậy bài toán được chứng minh
b/ Nếu a, b trái dầu thì a/b sẽ có dạng +a / -b ( là số hữu tỉ âm )
hoặc -a / +b ( là số hữu tỉ âm )
=> Vậy bài toán được chứng minh
\(a\sqrt[3]{m^2}+b\sqrt[3]{m}+c=0.\)
\(\Leftrightarrow\sqrt[3]{m^2}=-\frac{b\sqrt[3]{m}+c}{a}\)
\(a\sqrt[3]{m^2}+b\sqrt[3]{m}+c=0.\)
\(\Leftrightarrow a.m+b\sqrt[3]{m^2}+c\sqrt[3]{m}=0\)
\(\Leftrightarrow a.m+b.\left(-\frac{b\sqrt[3]{m}+c}{a}\right)+c\sqrt[3]{m}=0\)
\(\Leftrightarrow a^2m+b.\left(-b\sqrt[3]{m}-c\right)+ac\sqrt[3]{m}=0\)
\(\Leftrightarrow a^2m-b^2.\sqrt[3]{m}-bc+ac\sqrt[3]{m}=0\)
\(\Leftrightarrow a^2m-bc=\sqrt[3]{m}\left(b^2-ac\right)\)
\(\Leftrightarrow\frac{a^2m-bc}{\sqrt[3]{m}}=b^2-ac\)
Do \(\frac{a^2m-bc}{\sqrt[3]{m}}\in I\)và \(b^2-ac\in Q\)nên
\(\Rightarrow\hept{\begin{cases}\frac{a^2m-bc}{\sqrt[3]{m}}=0\\b^2-ac=0\end{cases}\Leftrightarrow\hept{\begin{cases}a^2m-bc=0\\b^2-ac=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a^2m=bc\\b^2=ac\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}a^3m=abc\\b^3=abc\end{cases}\Rightarrow a^3m=b^3}\)
Với \(a,b\ne0\) \(\Rightarrow m=1\Rightarrow\sqrt[3]{m}=1\)là số hữu tỉ ( LOẠI )
Với \(a=b=0\Rightarrow c=0\left(TM\right)\)
Vậy a=b=c=0 thỏa mãn đề bài
`@` `\text {Ans}`
`\downarrow`
`+` Số hữu tỉ âm: `-5/7; -4/9; -14/9; -5/8; -8`
`+` Số hữu tỉ dương: `-3/-8`
`+` Số hữu tỉ không âm cũng không dương: `0/5; -0 (\text {vì} 0/5=0).`
`#\text {NgMH101}.`
âm: -5/7; -4/9; -14/9; -5/8;-8
không âm, không dương: 0/5;-0
dương: -3/-8
Các bn lm ơn lm nhanh hộ tui dc ko? Tui đag cần rất gấp đó các bn ơi!
Vì D > C , B > A
=> D - A > C - B
=> -1 ( D - A ) < ( C - B ) ( -1 )
=> A - D < B - C
Nhầm A,B,C,D mới đúng