Đề bài :Cho a+b+c=0 .Chứng minh:a^3+b^3+c^3=3abc
Giải xong thì kb nha !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì a +b+ c = 0
<=> a+b = -c
<=> \(\left(a+b\right)^3=-c^3\)
<=> \(a^3+3a^2b+3ab^2+b^3=-c^3\)
<=> \(a^3+b^3+c^3=-3ab\left(a+b\right)\)
\(a^3+b^3+c^3=3abc\)
Theo tính chất trọng tâm ta có: \(\overrightarrow{AG}=\dfrac{2}{3}\overrightarrow{AM}\)
Mặt khác AM là trung tuyến nên: \(\overrightarrow{AM}=\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AC}\)
\(\Rightarrow\overrightarrow{AG}=\dfrac{2}{3}\left(\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AC}\right)\Rightarrow3\overrightarrow{AG}=\overrightarrow{AB}+\overrightarrow{AC}\) (1)
K là trung điểm AB, N là trung điểm AC nên: \(\left\{{}\begin{matrix}\overrightarrow{AK}=\dfrac{1}{2}\overrightarrow{AB}\\\overrightarrow{AN}=\dfrac{1}{2}\overrightarrow{AC}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AB}=2\overrightarrow{AK}\\\overrightarrow{AC}=2\overrightarrow{AN}\end{matrix}\right.\) (2)
(1);(2) \(\Rightarrow3\overrightarrow{AG}=2\left(\overrightarrow{AK}+\overrightarrow{AN}\right)\)
3a) x2 (x-1) - 4x2 + 8x - 4
= x2(x-1) - ( 2x - 2)2
= (x\(\sqrt{x-1}\))2 -( 2x - 2)2
= (x\(\sqrt{x-1}\)- 2x+2) ( x\(\sqrt{x-1}\)+ 2x - 2)
3b) = x3 +33 + (x+3) (x-9)
= (x + 3)( x2 - 3x + 9) + (x+3)(x-9)
= (x+3)(x2 -2x) = (x + 3)(x - 2)x
\(\Rightarrow\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\)
\(\Rightarrow a=b=c\left(đpcm\right)\)
Ta có: \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)
\(3\left(a^2+b^2+c^2\right)=3a^2+3b^2+3c^2\)
mà \(\left(a+b+c\right)^2=3\left(a^2+b^2+c^2\right)\Rightarrow a^2+b^2+c^2+2ab+2bc+2ca=3a^2+3b^2+3c^2\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Vì \(\left\{{}\begin{matrix}\left(a-b\right)^2\ge0\forall a,b\\\left(b-c\right)^2\ge0\forall b,c\\\left(c-a\right)^2\ge0\forall a,c\end{matrix}\right.\)
Mà \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\Leftrightarrow}a=b=c\Rightarrowđpcm}\)
ok tui làm nè
a) 3B=3+3^2+3^3+...+3^2007
=>3B-B=2B=3^2007-1
=>B=\(\frac{3^{2007}-1}{2}\)
b) ở câu này mình có thể áp dụng hằng đẳng thức \(^{a^n}\)- \(^{b^n}\) nhưng để những bạn ko chuyên hoặc bthuong hiểu mình sẽ làm cách khác
ta có \(^{4^2}\) chia 3 dư 1 => \(^{\left(4^2\right)^3}\)chia 3 dư 1
=>\(^{\left(4^2\right)^3}\).4 chia cho 3 dư 1 nữa
do đó \(^{4^7}\)-1 sẽ chia hết cho 3
a: a^3+b^3+c^3-3abc
=(a+b)^3+c^3-3ab(a+b)-3bac
=(a+b+c)(a^2+2ab+b^2-ac-bc+c^2)-3ab(a+b+c)
=(a+b+c)(a^2+b^2+c^2-ab-ac-bc)
b: Đề sai rồi bạn
c: 2(a+b+c)*(b/2+c/2-a/2)
=(a+b+c)(b+c-a)
=(b+c)^2-a^2
=c^2+2bc+c^2-a^2
a) Ta có: a+b+c+d=0
Suy ra f(1)= a.1^3+b.1^2+c.1+d=a+b+c+d=.0
Vậy x=1 là một nghiệm của f(x)
b) Ta có: a+c=b+d => -a+b-c+d=0
Suy ra f(-1)= a.(-1)^3+b.(-1)^2+c.(-1)+d=-a+b-c+d=0
Vậy x=-1 là một nghiệm của f(x)
bạn hãy vào:
olm.vn/hoi-dap/question/98929.html
Ta có \(a^3+b^3+c^3-3abc=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)=0
=> a^3+b^3+c^3=3abc(ĐPCM )
^.^