Cho A = 16x4 - 8x3y + 7x2y2 - 9y4 ; -15x4 + 3x3y - 5x2y2 - 6y4 ; C = 5x3y + 3x2y2 + 17y4 + 1 . Chứng minh rằng : Ít nhất 1 trong 3 đa thức có giá trị dương vs mọi x , y
PS : Nếu phân vân hoặc ko trả lời dc thì theo dõi để chờ đáp án vào CN tuần sau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta cộng cả ba đa thức vói nhau có :
$A+B+C = (16x^4-8x^3y+7x^2y^2-9y^4) + (-15x^4+3x^3y - 5x^2y^2-6y^4) + (5x^6y+ 3x^2y^2+17y^4+1)$
$ = x^4 + 5x^2y^2 + 2y^4 + 1 > 0 $
Do đó một trọng ba đa thức trên có giá trị dương với mọi x,y.
`(2x-y)(16x^4+8x^3y+4x^2y^2+2xy^3+y^4)`
`=(2x-y)[(2x)^4+(2x)^3y+(2x)^2y^2+2xy^3+y^4)`
`=(2x)^5-y^5`
`=32x^5-y^5`
Để số 8x3y chia hết cho 5 thì y = 0 hoặc y = 5
Khi y = 0 thì để số 8x3y chia hết cho 3 thì x = 4 hoặc x = 7
khi y = 5 thì để 8x3y chia hết cho 3 thì x = 2 hoặc x = 5 hoặc x = 8
b)
\(A+B=\left(x^2y+2xy^2-7x^2y^2+x^4\right)+\left(5x^2y^2-2xy^2-x^2y-3x^4-1\right)\)
\(A+B=x^2y+2xy^2-7x^2y^2+x^4+5x^2y^2-2xy^2-x^2y-3x^4-1\)
\(A+B=(x^2y-x^2y)+(2xy^2-2xy^2)+(-7x^2y^2+5x^2y^2)+(x^4-3x^4)-1\)
\(A+B=-2x^2y^2-2x^4-1\)
c) \(-2.1^2.1^2-2.1^4-1=-3\)
CÂU C BẠN TÌM CÁCH LÀM NHA MIK KHÔNG BIẾT CÁCH TRÌNH BÀY
`@` `\text {Ans}`
`\downarrow`
`7x^2y^2 - 10x^2yz + 1 - 3x^2yz`
`= 7x^2y^2 + (-10x^2yz - 3x^2yz) + 1`
`= 7x^2y^2 - 13x^2yz + 1`
Ta có 7 x 2 y 2 – 21 x y 2 z + 7 x y z + 14 x y
= 7xy.xy – 7xy.3yz + 7xy.z + 7xy.2 = 7xy(xy – 3yz + z + 2)
Đáp án cần chọn là: D