Cho \((X+\sqrt{X^2+2013})(Y+\sqrt{Y+2013})=2013\)
Chứng Minh :\(x^{2013}+y^{2013}=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\left(x+\sqrt{x^2+2013}\right)\left(y+\sqrt{y^2+2013}\right)=2013\\ \Leftrightarrow\left(x^2-x^2-2013\right)\left(y+\sqrt{y^2+2013}\right)=2013\left(x-\sqrt{x^2+2013}\right)\\ \Leftrightarrow y+\sqrt{y^2+2013}=\sqrt{x^2+2013}-x\left(1\right)\)
Tương tự: \(x+\sqrt{x^2+2013}=\sqrt{y^2+2013}-y\left(2\right)\)
Do đó: 2x=-2y
Suy ra: x=-y
Do đó:
\(x^{2013}+y^{2013}=\left(-y\right)^{2013}+y^{2013}=0\left(ĐPCM\right)\)
\(\left(x+\sqrt{x^2+\sqrt{2013}}\right)\left(x-\sqrt{x^2+\sqrt{2013}}\right)=x^2-x^2-\sqrt{2013}=-\sqrt{2013}\) (1)
Theo đề bài và (1) => dpcm
b) theo a có \(y+\sqrt{y^2+\sqrt{2013}}=-x+\sqrt{x^2+\sqrt{2013}}\)(2)
tương tự ta có \(x+\sqrt{x^2+\sqrt{2013}}=-y+\sqrt{y^2+\sqrt{2013}}\)(3)
Cộng 2 vế (2) với (3) => x+y = -x -y
hay 2(x+y) =0 =>S= x+y =0
B> \(\left(x+\sqrt{x^2+2013}\right)\left(y+\sqrt{y^2+2013}\right)\)\(=2013\)
\(\Leftrightarrow\left(x+\sqrt{x^2+2013}\right)\left(y+\sqrt{y^2+2013}\right)\)\(\left(x-\sqrt{x^2+2013}\right)=2013\left(x-\sqrt{x^2+2013}\right)\)
\(\Leftrightarrow\left(x^2-x^2-2013\right)\left(y+\sqrt{y^2+2013}\right)\)\(=2013\left(x-\sqrt{x^2+2013}\right)\)
\(\Leftrightarrow-2013\left(y+\sqrt{y^2+2013}\right)\)\(=2013\left(x-\sqrt{x^2+2013}\right)\)
\(\Leftrightarrow y+\sqrt{y^2+2013}=-x+\sqrt{x^2+2013}\)
Chứng minh tương tự: \(x+\sqrt{x^2+2013}=-y+\sqrt{y^2+2013}\)
cộng vế theo vế ta được: \(x+y=-x-y\)
\(\Leftrightarrow x+y=0\Leftrightarrow x=-y\Leftrightarrow x^{2013}=-y^{2013}\)
\(\Leftrightarrow x^{2013}+y^{2013}=0\)
a,Ta có x =...
x = \(\frac{\sqrt{3}\left(\sqrt{\sqrt{3}+1}+1\right)-\sqrt{3}\left(\sqrt{\sqrt{3+1}-1}\right)}{\left(\sqrt{\sqrt{3}+1}\right)\left(\sqrt{\sqrt{3}-1}\right)}\)
x = \(\frac{\sqrt{3}\left(\sqrt{\sqrt{3}+1}+1-\sqrt{\sqrt{3}+1}+1\right)}{\sqrt{3}+1-1}\)
x = \(\frac{\sqrt{3}.2}{\sqrt{3}}\)
x = 2
sau đó thay x=2 vào A nhé.
A=2014 !!!
Ta có\(\left(x+\sqrt{x^2+2013}\right)\left(\sqrt{x^2+2013}-x\right)=x^2+2013-x^2=2013\)
Mà \(\left(x+\sqrt{x^2+2013}\right)\left(y+\sqrt{y^2+2013}\right)=2013\)
\(\Rightarrow\sqrt{x^2+2013}-x=y+\sqrt{y^2+2013}\)(1)
Tương tự \(x+\sqrt{x^2+2013}=\sqrt{y^2+2013}-y\)(2)
Lấy (1) - (2) ta được -2x = 2y
<=> 2x + 2y = 0
<=> P = x + y = 0
Dễ dàng nhận ra \(x-\sqrt{x^2+2013}\ne0\), nhân 2 vế với nó:
\(\Leftrightarrow-2013\left(y+\sqrt{y^2+2013}\right)=2013\left(x-\sqrt{x^2+2013}\right)\)
\(\Leftrightarrow y+\sqrt{y^2+2013}=\sqrt{x^2+2013}-x\)
Tương tự ta có \(x+\sqrt{x^2+2013}=\sqrt{y^2+2013}-y\)
Cộng vế với vế:
\(x+y+\sqrt{x^2+2013}+\sqrt{y^2+2013}=\sqrt{x^2+2013}+\sqrt{y^2+2013}-x-y\)
\(\Rightarrow2\left(x+y\right)=0\Rightarrow P=0\)
pt <=> \(\left(\sqrt{x^2+2013}+x\right)\) . \(\left(\sqrt{x^2+2013}-x\right)\). \(\left(\sqrt{y^2+2013}+y\right)\)= 2013 . \(\left(\sqrt{x^2+2013}-x\right)\)
<=> 2013 . \(\left(\sqrt{y^2+2013}+y\right)\)= 2013 . \(\left(\sqrt{x^2+2013}-x\right)\)
<=> \(\sqrt{y^2+2013}+y\)= \(\sqrt{x^2+2013}-x\)
Tương tự : \(\sqrt{x^2+2013}+x\)= \(\sqrt{y^2+2013}-y\)
=> x=-y
=> x+y = 0
Tk mk nha
\(\left(x+\sqrt{x^2+2013}\right)\left(y+\sqrt{y^2+2013}\right)=2103\)
Ta có: \(\hept{\begin{cases}\left(x+\sqrt{x^2+2013}\right)\left(\sqrt{x^2+2013}-x\right)=2013\\\left(y+\sqrt{y^2+2013}\right)\left(\sqrt{y^2+2013}-y\right)=2013\end{cases}}\)
Kết hợp với giả thiết ta có:
\(\hept{\begin{cases}\sqrt{x^2+2013}-x=y+\sqrt{y^2+2013}\\\sqrt{y^2+2013}-y=x+\sqrt{x^2+2013}\end{cases}}\)
Cộng theo vế ta có: \(-x-y=x+y\)
\(\Rightarrow\)\(A=x+y=0\)
chỗ kia bạn ghi sai đề r:
mình sửa luôn
\(\left(x+\sqrt{x^2+2013}\right)\left(y+\sqrt{y^2+2013}\right)=2013\)
xét\(\left(x+\sqrt{x^2+2013}\right)\left(y+\sqrt{y^2+2013}\right)\left(\sqrt{y^2+2013}-y\right)=2013\left(\sqrt{y^2+2013}-y\right)\)
\(x+\sqrt{x^2+2013}=\sqrt{y^2+2013}-y\) (1)
xét \(\left(x+\sqrt{x^2+2013}\right)\left(\sqrt{x^2+2013}-x\right)\left(y+\sqrt{y^2+2013}\right)=2013\left(\sqrt{x^2+2013}-x\right)\)
\(y+\sqrt{y^2+2013}=\sqrt{x^2+2013}-x\)(2)
từ (1) và (2)
=> x=-y
nên
\(x^{2013}=-y^{2013}\) hay
\(x^{2013}+y^{2013}=0\)