K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2018

\(a,\frac{16}{2^n}=2\)

\(\Rightarrow\frac{16}{2^n}=\frac{2}{1}\)

\(\Rightarrow2^n.2=16\)

\(\Rightarrow4^n=4^2\)

\(\Rightarrow n=2\)

\(b,\frac{\left(-3\right)^n}{81}=-27\)

\(\Rightarrow\left(-3\right)^n=81.\left(-27\right)\)

\(\Rightarrow\left(-3\right)^n=-2187\)

\(\Rightarrow\left(-3\right)^n=\left(-3\right)^7\)

\(\Rightarrow n=7\)

17 tháng 8 2018

16/2^n=2 => 2^n .2 =16 => 2^n=8=2^3=>n=3

14 tháng 4 2020

b1 : 

a, gọi d là ƯC(2n + 1;2n +2) 

=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d

=> 2n + 2 - 2n - 1 chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> 2n+1/2n+2 là ps tối giản

14 tháng 4 2020

Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:

A=2n+1/2n+2

Gọi ƯCLN của chúng là a 

Ta có:2n+1 chia hết cho a

           2n+2 chia hết cho a

- 2n+2 - 2n+1 

- 1 chia hết cho a

- a= 1

  Vậy 2n+1/2n+2 là phân số tối giản

B=2n+3/3n+5

Gọi ƯCLN của chúng là a

2n+3 chia hết cho a

3n+5 chia hết cho a

Suy ra 6n+9 chia hết cho a

            6n+10 chia hết cho a

6n+10-6n+9

1 chia hết cho a 

Vậy 2n+3/3n+5 là phân số tối giản

Mình chỉ biết thế thôi!

#hok_tot#

1 tháng 2 2019

a, Ta có 8n - 59 = ( 2n -16 ) + ( 2n -16 ) + ( 2n - 16 ) + ( 2n - 16 ) + 5

2n - 16 luôn luôn chia hết cho 2n - 16 

=> 4.(2n-16) chia hết cho 2n-16 <=> 5 chia hết cho 2n - 16

=> 2n - 16 thuộc Ư(5) = { 1;-1;5;-5 }

Tự làm nốt

b, tương tự 

c, 6n - 46 = (2n-18) + (2n-18) + (2n-18) + 8

... Tiếp tục :))

1 tháng 2 2019

a ,\(8n-59⋮2n-16\)

Mà \(2n-16⋮2n-16\) 

\(\Rightarrow4\left(2n-16\right)⋮2n-16\)

\(\Rightarrow8n-64⋮2n-16\) 

\(\Rightarrow\left(8n-59\right)-\left(8n-64\right)⋮2n-16\) 

\(\Rightarrow8n-59-8n+64⋮2n-16\) 

\(\Rightarrow5⋮2n-16\) 

\(\Rightarrow2n-16\inƯ\left(5\right)\) 

\(\Rightarrow2n-16\in\left\{\pm1;\pm5\right\}\) 

\(\Rightarrow2n\in\left\{17;15;21;11\right\}\) 

\(\Rightarrow\) KHÔNG CÓ SỐ NÀO THỎA MÃN CỦA 2n 

\(\Rightarrow x\in\varnothing\)

12 tháng 1 2017

\(\Rightarrow\)2(n-7) - (2n+3) \(⋮\)2n+3

\(\Rightarrow\)(2n-14) - (2n+3) \(⋮\)2n+3

\(\Rightarrow\)2n - 14 - 2n - 3  \(⋮\)2n+3

\(\Rightarrow\)-17                   \(⋮\)2n+3

\(\Rightarrow2n+3\inƯ\left(-17\right)=\left(1;-1;17;-17\right)\)

ta có bảng sau :

2n+3           1                      -1                            17                      -17

n                -1                     -2                             7                       -10

mà \(n\in Z\)

\(\Rightarrow n\in\left(-1;-2;7;-10\right)\)

12 tháng 1 2017

theo bài ra ta có:\

\(\left(n-7\right)⋮\left(2n+3\right)\) 

=> (n - 7) - (2n+3) \(⋮2n+3\) 

=> \(2\left(n-7\right)-\left(2n+3\right)⋮2n+3\) 

=> \(2n-4-2n-3⋮2n+3\) 

=> \(-7⋮2n+3\) 

=> 2n+3 E Ư(-7) = { 1;-1;7;-7 }

ta có bảng sau:

2n+31-17-7
2n-2-44-10
n-1-22-5

vậy n ={ -1;-2;2;-5 }

25 tháng 11 2017

a) Ta có : 8n + 193 = ( 8n + 6 ) + 187 = 4 . ( 4n + 3 ) + 187

vì 4 . ( 4n + 3 ) \(⋮\)4n + 3 nên để 8n + 193 \(⋮\)4n + 3 thì 187 \(⋮\)4n + 3

\(\Rightarrow\)4n + 3 \(\in\)Ư ( 187 ) = { 1 ; 11 ; 17 ; 187 }

Lập bảng ta có :

4n+311117187
n-1/2(loại)27/2(loại)46

Vậy n \(\in\){ 2 ; 46 }

còn lại tương tự

25 tháng 11 2017

a. 8n+196 chia hết cho 4n+3

=> 8n+6+187 chia hết cho 4n+3

=> 2(4n+3)+187 chia hết cho 4n+3

=> 187 chia hết cho 4n+3

=> 4n+3 thuộc Ư(187) và n là số tự nhiên

=> 4n+3 thuộc {1;11;17;187}

•4n+3=1=> n ko là số tự nhiên

• 4n+3=11=> n=2

•4n+3=17=> n ko là số tự nhiên

•4n+3=187=> n=46

Vậy n=2 hoặc n=46

b. 15 chia hết cho 2n+3

=> 2n+3 thuộc Ư(15) 

=> 2n+3 thuộc {1;3;5;15}

•2n+3=1=> n ko là số tự nhiên

•2n+3=3=> n=0

•2n+3=5=> n=1

•2n+3=15=> n=6

Vậy n thuộc {0;1;6}

c. 2n+8 chia hết cho n+2

=> 2(n+2)+4 chia hết cho n+2

=> 4 chia hết cho n+2

=> n+2 thuộc {1;2;4}

•n+2=1=> n ko là số tự nhiên

• n+2=2=>n=0

• n+2=4=> n=2

Vậy n=0 hoặc n=2

17 tháng 6 2016

1./ Do 2n + 1 là số lẻ nên n2 - 2n + 4 chia hết cho 2n+1 thì 4(n2 - 2n + 4) cũng chia hết cho 2n + 1 (nhân số 4 chẵn ko tăng thêm ước cho 2n + 1)

mà: B = 4(n2 - 2n + 4) = 4n2 + 4n + 1 - 12n - 6 + 21 = (2n + 1)2 - 6(2n+1) + 21 = (2n + 1)(2n + 1 - 6) +21 = (2n + 1)(2n - 5) + 21

=> B chia hết cho 2n + 1 <=> 21 chia hết cho 2n + 1.

=> 2n + 1 thuộc U (21) = {-21;-7;-3;-1;1;3;7;21}

Khi đó n = -11; -4 ; -2; -1 ; 0 ; 1; 3 ; 10.

2./ C = 2n2 + 8n + 11 = 2n2 +4n + 4n + 8 + 3 = 2n(n + 2) + 4(n + 2) + 3 = (n + 2)(2n + 4) + 3

để 2n2 + 8n + 11 chia hết cho n + 2 thì n + 2 phải là U(3) = {-3; -1; 1; 3)

Khi đó n = -5 ; -3 ; -1 ; 1

22 tháng 2 2022

\(a,3n-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)

3n-11-12-23-34-46-612-12
nloại01loạiloạiloạiloại-1loạiloạiloạiloại

 

c, \(\dfrac{2\left(n-3\right)+9}{n-3}=2+\dfrac{9}{n-3}\Rightarrow n-3\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)

n-31-13-39-9
n426012-6

 

27 tháng 2 2023

Có đúng không