K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2015

de the ma ns kho

72+32=58

(tong binh phuong la : a2+b)

ket qua bai nay la 58

AH
Akai Haruma
Giáo viên
7 tháng 3 2021

Lời giải:

Gọi 2 số dương đề cập ở đề là $a$ và $b$. Theo bài ra ta có:

$\frac{a}{b}=\frac{7}{2}$ và $ab=21$

$\Rightarrow a=\frac{7}{2}b$ và $ab=21$

$\Rightarrow \frac{7}{2}b.b=21$

$\Rightarrow b^2=6$

$a^2=(\frac{7}{2}b)^2=\frac{49}{4}.b^2=\frac{147}{2}$

Tổng bình phương 2 số:

$a^2+b^2=\frac{147}{2}+6=\frac{159}{2}$

17 tháng 9 2017

Gọi 2 số cần tìm là x, y, tao đề bài ta có:

\(\frac{x}{y}=0,9=>\frac{x^2}{y^2}=\frac{81}{100}=>\frac{x^2}{81}=\frac{y^2}{100};x^2+y^2=72.4\)

Áp dụng tính chất dãy tỉ số = nhau, ta có:

\(\frac{x^2}{81}=\frac{y^2}{100}=\frac{x^2+y^2}{81+100}=\frac{72.4}{181}=\frac{2}{5}\)

=> \(\frac{x^2}{81}=\frac{2}{5}=>x^2=\frac{162}{5}=>x=\frac{9\sqrt{10}}{5}\)(Do x là số nguyên dương => \(x\ne-\frac{9\sqrt{10}}{5}\))

=> làm tương tự vậy thì đc : y = \(2\sqrt{10}\)

Vậy...

CẢM ƠN BN NHA!!!

9 tháng 4 2016

xin lỗi bạn nhé , mình mới học đến lớp 5

18 tháng 2 2021

a. Chứng minh rằng nếu mỗi số trong hai số nguyên là tổng các bình phương của hai số nguyên nào đó thì tích của chúng có thể viết dưới dạng tổng hai bình phương.b. Chứng minh rằng tổng các bình phương của k số nguyên liên tiếp (k = 3, 4, 5) không là số chính phương. - Tìm trên Google

18 tháng 2 2021

Bạn học trên olm à

Nguyễn Thị Thuỳ Linh CTV

NV
18 tháng 9 2021

Giả sử \(n=a^2+b^2\) và \(m=c^2+d^2\)

\(\Rightarrow n.m=\left(a^2+b^2\right)\left(c^2+d^2\right)=a^2c^2+b^2d^2+a^2d^2+b^2c^2\)

\(=\left(a^2c^2+b^2d^2-2abcd\right)+\left(a^2d^2+b^2c^2+2abcd\right)\)

\(=\left(ac-bd\right)^2+\left(ad+bc\right)^2\) là tổng 2 bình phương (đpcm)