Cho 2 số nguyên dương có tỉ số của chúng là 7 : 3 và tích của chúng là 21. hai số đó có tổng bình phương là?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Gọi 2 số dương đề cập ở đề là $a$ và $b$. Theo bài ra ta có:
$\frac{a}{b}=\frac{7}{2}$ và $ab=21$
$\Rightarrow a=\frac{7}{2}b$ và $ab=21$
$\Rightarrow \frac{7}{2}b.b=21$
$\Rightarrow b^2=6$
$a^2=(\frac{7}{2}b)^2=\frac{49}{4}.b^2=\frac{147}{2}$
Tổng bình phương 2 số:
$a^2+b^2=\frac{147}{2}+6=\frac{159}{2}$
Gọi 2 số cần tìm là x, y, tao đề bài ta có:
\(\frac{x}{y}=0,9=>\frac{x^2}{y^2}=\frac{81}{100}=>\frac{x^2}{81}=\frac{y^2}{100};x^2+y^2=72.4\)
Áp dụng tính chất dãy tỉ số = nhau, ta có:
\(\frac{x^2}{81}=\frac{y^2}{100}=\frac{x^2+y^2}{81+100}=\frac{72.4}{181}=\frac{2}{5}\)
=> \(\frac{x^2}{81}=\frac{2}{5}=>x^2=\frac{162}{5}=>x=\frac{9\sqrt{10}}{5}\)(Do x là số nguyên dương => \(x\ne-\frac{9\sqrt{10}}{5}\))
=> làm tương tự vậy thì đc : y = \(2\sqrt{10}\)
Vậy...
a. Chứng minh rằng nếu mỗi số trong hai số nguyên là tổng các bình phương của hai số nguyên nào đó thì tích của chúng có thể viết dưới dạng tổng hai bình phương.b. Chứng minh rằng tổng các bình phương của k số nguyên liên tiếp (k = 3, 4, 5) không là số chính phương. - Tìm trên Google
Giả sử \(n=a^2+b^2\) và \(m=c^2+d^2\)
\(\Rightarrow n.m=\left(a^2+b^2\right)\left(c^2+d^2\right)=a^2c^2+b^2d^2+a^2d^2+b^2c^2\)
\(=\left(a^2c^2+b^2d^2-2abcd\right)+\left(a^2d^2+b^2c^2+2abcd\right)\)
\(=\left(ac-bd\right)^2+\left(ad+bc\right)^2\) là tổng 2 bình phương (đpcm)
de the ma ns kho
72+32=58
(tong binh phuong la : a2+b2 )
ket qua bai nay la 58