dùng chữ số tận cùng của lũy thừa đặc biệt.Cho n thuoc N ;n>1
Chung minh rang :22mũ n + 1 co tan cung la 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
so tan cung {3,7,9)
\(tancung3=>\left(....3\right)^{4n}=\left(...3\right)^{4^n}=\left(...3^4\right)^n=\left(...3^{2^2}\right)^n=\left(....9^2\right)^n\)
\(=\left(...81^2\right)^n=\left(....1\right)^n=>tancung1\)
\(tancung7=>\left(...7^4\right)^n=\left(....7^{2^2}\right)^n=\left(....9^2\right)^n=\left(.....1\right)^n\)
a, Ta có : 2016 chia hết cho 4 mà lũy thừa
=> \(1944^{2016}\)có chữ số tận cùng giông với : \(4^{2016}=............6\)( vì lũy thừ có cơ số 4 và số mũ la số chia hết cho 4 thì chữ số tận cùng của lũy thừa đó luôn là 6 )
Vậy chữ số tận cùng của \(1944^{2016}\)là 6
b, Ta có \(1944^{2016}\)chia hết cho 4 ( Vì 1944 chia hết cho 4 ) và \(1944^{2016}=324^{2016}.6^{2016}\)
mà : 324 đồng dư với -1 (mod 25 )
=> \(324^{2016}\)đồng dư với \(\left(-1\right)^{2016}\)đồng dư với 1 ( mod 25 )
và : \(6^{2016}\)\(=6^{2015}.6\)
Ta có : \(6^{2015}=\left(6^5\right)^{403}\)\(=7776^{403}\)
Có : 7776 đồng dư với 1 ( mod 25 )
=> \(7776^{403}\)đồng dư với \(1^{403}\)đồng dư với 1 ( mod 25 )
Có : 6 đồng dư với 6 ( mod 25 )
=> \(1944^{2016}\)đồng dư với \(324^{2016}.6^{2015}.6\)đồng dư với 1.1.6 đồng dư với 6 ( mod 25 )
=> \(1944^{2016}\)chia cho 25 dư 6
=>\(1944^{2016}\)= 25.k + 6 chia hết cho 4
Ta có : 25.k + 6 chia hết cho 4
24.k + k + 2 + 4 chia hết cho 4
=> k + 2 chia hết cho 4
=> k = 4.m - 2
Thay k = 4.m - 2 ta có :
\(1944^{2016}=\) 25. (4.m - 2 ) + 6
\(1944^{2016}=\)100 .m - 50 + 6
\(1944^{2016}=\)100.m - 44 = .........00 - 44
\(1944^{2016}=\)...........56
Vậy hai chữ số tận cùng của \(1944^{2016}=\)56
Ai thấy mik làm đúng thì ủng hộ nha !!!
Cảm ơn các bạn nhiều
A) 72006 = ( 72 ) 1003
= ...91003
= ...9 x ...91002
= ...11002
= ...1
VẬY CHỮ SỐ TẬN CÙNG CỦA 72006 LÀ 1
B) 91991 = 9 x 91990
= ...11990
= (...15)398
= ...1398
= ...1
VẬY CHỮ SỐ TẬN CÙNG CỦA 91991 LÀ 1
PHẦN C MÌNH KO BIẾT LÀM
TÍCH HỘ MÌNH NHA
81975 = (84)493.83 = \(\overline{..6}\)493. \(\overline{...2}\) = \(\overline{..2}\)
3401 = 3400.3 = ( 34 )100.3 = 81100.3 (....1) .3 = (....3)
vậy c/s tận cùng của 3401 là 3