K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2017

Giải bài tập Toán 11 | Giải Toán lớp 11 Giải bài tập Toán 11 | Giải Toán lớp 11

8 tháng 9 2023

\(u_n:\left\{{}\begin{matrix}u_1=0;u_1=1\\u_{n+2}=\dfrac{u_{n+1}}{u_{n+1}+u_{n+2}}\end{matrix}\right.\)

Giả sử \(limu_n=a\Rightarrow limu_{n+1}=limu_{n+2}=a\)

\(\Rightarrow a=\dfrac{a}{a+a}=\dfrac{a}{2a}=\dfrac{1}{2}\)

Nên dãy \(u_n\) có giới hạn hữu hạn

vì \(\left\{{}\begin{matrix}u_1=0\\u_2=1>0\end{matrix}\right.\)

\(\Rightarrow u_{n+2}=\dfrac{u_{n+1}}{u_{n+1}+u_{n+2}}>0,\forall n\inℕ\)

\(\Rightarrow a>0\)

\(\Rightarrow limu_n=a=\dfrac{1}{2}\)

uses crt;

var x:array[1..100]of real;

n,i:integer;

tb:real;

begin

clrscr;

write('Nhap n='); readln(n);

for i:=1 to n do 

  begin

write('X[',i,']='); readln(x[i]);

end;

tb:=0;

for i:=1 to n do 

  tb:=tb+x[i];

writeln(tb/n:4:2);

readln;

end.

NV
1 tháng 3 2021

Đề bài sai, dãy tăng và không hề bị chặn trên nên không tồn tại giới hạn

8 tháng 9 2023

Bạn ghi rõ lại đề, phần .../(n+4)

28 tháng 9 2019