giải phương trình
a) \(x+\sqrt{x-2}=2\sqrt{x-1}\)
b) \(^{x^2+x+12\sqrt{x+1}=36}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ x>0
Chia cả 2 vế của pt cho \(\sqrt{x}\ne0\),ta được
\(12+\sqrt{\frac{x-1}{x}}=\frac{2}{x}+\sqrt{\frac{169x-65}{x}}\)
\(\Rightarrow12-\frac{2}{x}+\sqrt{1-\frac{1}{x}}=\sqrt{65\left(1-\frac{1}{x}\right)+104}\)(2)
Đặt \(\sqrt{1-\frac{1}{x}}=a\)(\(a\ge0\)),khi đó pt (1) trở thành
\(2a^2+10+a=\sqrt{65a^2+104}\)
\(\Leftrightarrow\left(2a^2+a+10\right)^2=65a^2+104\)
\(\Leftrightarrow\left(a-1\right)^2\left(a^2+3a-1\right)=0\)
Đến đây bn tự giải tiếp nhé
a: Ta có: \(\sqrt{x^2-x+3}+7=10\)
\(\Leftrightarrow x\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
b: Ta có: \(\sqrt{x^2-4x+8}-7=-5\)
\(\Leftrightarrow x^2-4x+8=4\)
\(\Leftrightarrow x-2=0\)
hay x=2
b. 2 + \(\sqrt{2x-1}=x\) ĐKXĐ: \(x\ge0,5\)
<=> \(\sqrt{2x-1}\) = x - 2
<=> 2x - 1 = (x - 2)2
<=> 2x - 1 = x2 - 4x + 4
<=> -x2 + 2x + 4x - 4 - 1 = 0
<=> -x2 + 6x - 5 = 0
<=> -x2 + 5x + x - 5 = 0
<=> -(-x2 + 5x + x - 5) = 0
<=> x2 - 5x - x + 5 = 0
<=> x(x - 5) - (x - 5) = 0
<=> (x - 1)(x - 5) = 0
<=> \(\left[{}\begin{matrix}x-1=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=5\end{matrix}\right.\)
Em thử ạ!
ĐKXĐ: \(x\ge1\)
Đặt \(\sqrt{x-1}=t\ge0\Rightarrow x=t^2+1\)
\(PT\Leftrightarrow\sqrt{t^2-2t+1}+\sqrt{t^2+2t+1}=2\)
\(\Leftrightarrow\sqrt{\left(t-1\right)^2}+\sqrt{\left(t+1\right)^2}=2\)
\(\Leftrightarrow\left|t-1\right|+\left|t+1\right|=2\)
Với t <-1 => ko thỏa mãn điều kiện nên ta không cần xét
Với \(-1\le t< 1\) thì pt trở thành 2 = 2 (đúng)
Kết hợp đk t >= 0 suy ra \(0\le t< 1\Leftrightarrow0\le\sqrt{x-1}< 1\Leftrightarrow1\le x< 2\) (1)
Với \(t\ge1\). Phương trình trở thành \(2t=2\Leftrightarrow t=1\)
Suy ra x = 2 (2)
Kết hợp (1) và (2) suy ra \(1\le x\le2\)
\(\sqrt{x-2\sqrt{x-1}}+\sqrt{x+2\sqrt{x-1}=2}\) \(\left(x\ge1\right)\)
\(\Leftrightarrow x-2\sqrt{x-1}+x+2\sqrt{x-1}+2\sqrt{\left(x-2\sqrt{x-1}\right)\left(x+2\sqrt{x-1}\right)}=4\)
\(\Leftrightarrow2x+2\sqrt{x^2-4\left(x-1\right)}=4\)
\(\Leftrightarrow2x+2\sqrt{x^2-4x+4}=4\)
\(\Leftrightarrow2|x-2|=4-2x\)(1)
Với \(x\ge2\) thì (1) \(\Leftrightarrow2x-4=4-2x\Leftrightarrow4x=8\Leftrightarrow x=2\)
Với \(1\le x< 2\) thì (1) \(\Leftrightarrow2\left(2-x\right)=4-2x\Leftrightarrow4-2x=4-2x\) (luôn đg)
Vậy x = 2
a)\(\sqrt{x+9}=7\)
Đk:\(x\ge-9\).Bình phương 2 vế của pt ta có:
\(\sqrt{\left(x+9\right)^2}=7^2\)\(\Leftrightarrow x+9=49\Leftrightarrow x=40\)
b)\(\sqrt{x^2-12x+36}=81\)
Đk:\(x\ge6\)
\(\Leftrightarrow\sqrt{\left(x-6\right)^2}=81\)
\(\Leftrightarrow x-6=81\Leftrightarrow x=87\)
c)\(\sqrt{x-1}=4\)
Đk:\(x\ge1\).Bình phương 2 vế của pt ta có:
\(\sqrt{\left(x-1\right)^2}=4^2\)
\(\Leftrightarrow x-1=16\Leftrightarrow x=17\)