K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2018

Ta có : \(3x-8y=1\Rightarrow x=\dfrac{8y+1}{3}\)

\(\Rightarrow P=\dfrac{\left(8y+1\right)^2}{9}+y^2=\dfrac{64y^2+16y+1+9y^2}{9}=\dfrac{73y^2+16y+1}{9}\)

\(=\dfrac{73\left(y^2+\dfrac{16}{73}y+\dfrac{1}{73}\right)}{9}=\dfrac{73\left[\left(y^2+\dfrac{16}{73}y+\dfrac{64}{5329}\right)+\dfrac{9}{5329}\right]}{9}\)

\(=\dfrac{73\left[\left(y+\dfrac{8}{73}\right)^2+\dfrac{9}{5329}\right]}{9}\ge\dfrac{73.\dfrac{9}{5329}}{9}=\dfrac{1}{73}\)

Vậy \(MIN_P=\dfrac{1}{73}\) . Dấu \("="\) xảy ra khi \(x=\dfrac{3}{73}\)\(y=-\dfrac{8}{73}\)

7 tháng 9 2017

Đáp án A

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

13 tháng 9 2023

1.

\(a,\left(-xy\right)\left(-2x^2y+3xy-7x\right)\)

\(=2x^3y^2-3x^2y^2+7x^2y\)

\(b,\left(\dfrac{1}{6}x^2y^2\right)\left(-0,3x^2y-0,4xy+1\right)\)

\(=-\dfrac{1}{20}x^4y^3-\dfrac{1}{15}x^3y^3+\dfrac{1}{6}x^2y^2\)

\(c,\left(x+y\right)\left(x^2+2xy+y^2\right)\)

\(=\left(x+y\right)^3\)

\(=x^3+3x^2y+3xy^2+y^3\)

\(d,\left(x-y\right)\left(x^2-2xy+y^2\right)\)

\(=\left(x-y\right)^3\)

\(=x^3-3x^2y+3xy^2-y^3\)

2.

\(a,\left(x-y\right)\left(x^2+xy+y^2\right)\)

\(=x^3-y^3\)

\(b,\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(=x^3+y^3\)

\(c,\left(4x-1\right)\left(6y+1\right)-3x\left(8y+\dfrac{4}{3}\right)\)

\(=24xy+4x-6y-1-24xy-4x\)

\(=\left(24xy-24xy\right)+\left(4x-4x\right)-6y-1\)

\(=-6y-1\)

#Toru

NV
27 tháng 7 2021

\(\dfrac{M}{3}=\dfrac{x^2+y^2-xy}{x^2+y^2+xy}=\dfrac{3\left(x^2+y^2+xy\right)-2\left(x^2+y^2+2xy\right)}{x^2+y^2+xy}=3-\dfrac{2\left(x+y\right)^2}{x^2+y^2+xy}\le3\)

\(\Rightarrow M\le9\)

\(M_{max}=9\) khi \(\left\{{}\begin{matrix}x+y=0\\x^2+y^2+xy=3\end{matrix}\right.\) \(\Rightarrow\left(x;y\right)=\left(-\sqrt{3};\sqrt{3}\right);\left(\sqrt{3};-\sqrt{3}\right)\)

\(\dfrac{M}{3}=\dfrac{x^2+y^2-xy}{x^2+y^2+xy}=\dfrac{\dfrac{1}{3}\left(x^2+y^2+xy\right)+\dfrac{2}{3}\left(x^2+y^2-2xy\right)}{x^2+y^2+xy}=\dfrac{1}{3}+\dfrac{2\left(x-y\right)^2}{3\left(x^2+y^2+xy\right)}\ge\dfrac{1}{3}\)

\(\Rightarrow M\ge1\)

\(M_{min}=1\) khi \(\left\{{}\begin{matrix}x-y=0\\x^2+y^2+xy=3\end{matrix}\right.\) \(\Rightarrow x=y=\pm1\)

10 tháng 11 2021

\(1,Sửa:A=4x^4+4x^2y+y^2+2=\left(2x^2+y\right)^2+2\ge2\\ A_{min}=2\Leftrightarrow2x^2+y=0\Leftrightarrow x^2=-\dfrac{y}{2}\\ 2,B=\left(x+y\right)^2+\left(y+1\right)^2+12\ge12\\ B_{min}=12\Leftrightarrow\left\{{}\begin{matrix}x=-y=1\\y=-1\end{matrix}\right.\)

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

a) Đây không phải là phương trình đường tròn do có \(xy\).

b) Vì \({a^2} + {b^2} - c = {1^2} + {2^2} - 5 = 0\)nên phương trình đã cho không là phương trình tròn.

c) Vì \({a^2} + {b^2} - c = {\left( { - 3} \right)^2} + {4^2} - 1 = 24 > 0\)nên phương trình đã cho là phương trình tròn có tâm \(I\left( { - 3;4} \right)\) và bán kính \(R = \sqrt {{a^2} + {b^2} - c}  = 2\sqrt 6 \).

NV
21 tháng 7 2021

\(\dfrac{x^2+y^2}{2}\ge xy\Rightarrow-xy\ge-\dfrac{x^2+y^2}{2}\)

\(\Rightarrow4=x^2+y^2-xy\ge x^2+y^2-\dfrac{x^2+y^2}{2}=\dfrac{x^2+y^2}{2}\)

\(\Rightarrow x^2+y^2\le8\)

\(C_{max}=8\) khi \(x=y=\pm2\)

\(x^2+y^2\ge-2xy\Rightarrow-xy\le\dfrac{x^2+y^2}{2}\)

\(4=x^2+y^2-xy\le x^2+y^2+\dfrac{x^2+y^2}{2}=\dfrac{3}{2}\left(x^2+y^2\right)\)

\(\Rightarrow x^2+y^2\ge\dfrac{8}{3}\)

\(C_{min}=\dfrac{8}{3}\) khi \(\left(x;y\right)=\left(-\dfrac{2}{\sqrt{3}};\dfrac{2}{\sqrt{3}}\right);\left(\dfrac{2}{\sqrt{3}};-\dfrac{2}{\sqrt{3}}\right)\)

21 tháng 7 2021

undefinedĐúng thì like giúp mik nha bạn. Thx bạn

NV
22 tháng 12 2020

\(P=\dfrac{x^2-6xy+6y^2}{x^2-2xy+y^2}=\dfrac{-3\left(x^2-2xy+y^2\right)+4x^2-12xy+9y^2}{x^2-2xy+y^2}\)

\(=-3+\left(\dfrac{2x-3y}{x-y}\right)^2\ge-3\)

\(P_{min}=-3\) khi \(2x=3y\)

2 tháng 12 2016

Tu x+3y=1nen x=1-3y                                                                                                                                                                           Ta co A=(1-3y)2+y2=1-6y+9y2+y2                                                                                                                                                                 =10y2-6y+1                                                                                                                                                                                     =10(y2-3/5y+1/10)                                                                                                                                                                             =10(y2-2x3/10y+9/100+1/100)                                                                                                                                                           =10(y-3/10)2+1/10                                                                                                                                                                      Vi 10(y-3/10)2>=0                                                                                                                                                                 nen 10(y-3/10)2+1/10>=1/10

vay min A=1/10

=x^2-6x+9+4y^2-8y+4+2010

=(x-3)^2+(2y-2)^2+2010>=2010

Dấu = xảy ra khi x=3 và y=1