K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2016

ai học giỏi giải giùm mình với!

3 tháng 11 2016
Đáp số là x+ y + z
13 tháng 2 2020

\(A=\frac{x^2-yz}{\left(x+y\right)\left(x+z\right)}+\frac{y^2-xz}{\left(y+z\right)\left(y+x\right)}+\frac{z^2-xy}{\left(z+x\right)\left(z+y\right)}\)

\(=\frac{\left(x^2-yz\right)\left(y+z\right)+\left(y^2-xz\right)\left(z+x\right)+\left(z^2-xy\right)\left(x+y\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

\(=\frac{x^2y+x^2z-y^2z-yz^2+y^2z+y^2x-xz^2-x^2z+z^2x+z^2y-x^2y-xy^2}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

\(=\frac{0}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=0\)

Vậy : \(A=0\)

13 tháng 2 2020

\(\frac{(x^2-yz)(y+z)}{(x+y)(x+z)(y+z)}\) = ​​\(\frac{(y^2-xz)(x+z)}{(x+y)(x+z)(y+z)}\)​= \(\frac{(z^2-xy)(x+y)}{(x+y)(x+z)(y+z)}\)

19 tháng 7

ta có:x+y+z=0⇒x+y=-z⇔(x+y)2=z2⇔x2+2xy+y2-z2=0

⇒x2+y2-z2=-2xy(1)

CMTT:⇒y2+z2-x2=-2yz(2) và z2+x2-y2=-2xz(3)

Thay (1)(2)(3) vào B,ta có.B=-(2xy.2yz.2xz)/16xyz=-xyz/2

30 tháng 7 2017

\(x+y+z=0\Rightarrow\hept{\begin{cases}x=-\left(y+z\right)\\y=-\left(z+x\right)\\z=-\left(x+y\right)\end{cases}}\)

\(\Rightarrow P=\frac{x^2+y^2+z^2}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}=\frac{\left[-\left(y+z\right)\right]^2+\left[-\left(z+x\right)\right]^2+\left[-\left(x+y\right)\right]^2}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}=\frac{\left(y+z\right)^2+\left(z+x\right)^2\left(x+y\right)^2}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}=\frac{-\left[\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2\right]}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}=-1\)

30 tháng 7 2017

Mik mới biết làm câu a thôi còn câu b thì từ từ mik nghĩ đã nhé @-@

Chúc bn học giỏi nhoa!!!

16 tháng 8 2018

Ta có \(x+y+z=0\Rightarrow x+y=-z\Rightarrow x-y=z\Rightarrow\left(x-y\right)^2=z^2\)

\(x+y+z=0\Rightarrow x+z=-y\Rightarrow z-x=y\Rightarrow\left(z-x\right)^2=y^2\)

\(x+y+z=0\Rightarrow y+z=-x\Rightarrow y-z=x\Rightarrow\left(y-z\right)^2=x^2\)

Khi đó \(A=\frac{x^2+y^2+x^2}{\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2}\)

\(=\frac{x^2+y^2+z^2}{x^2+y^2+z^2}\)

\(=1\)

Vậy \(x+y+z=0\)thì \(A=1\)

17 tháng 8 2018

Cho mình hỏi tại sao x + y = -z \(\Rightarrow\)x-y = z