K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2018

a=1 hay x=1 zậy bn?

14 tháng 8 2018

Xét trường hợp khi x=1, khi đó:

1*(1-2)-2*(1-3)=1*(-1)-2*(-2)=-1-(-2)=-1+2=1

18 tháng 9 2023

A đâu em?

18 tháng 9 2023

\(A=\dfrac{x}{\sqrt{x}+1}+\dfrac{\sqrt{x}+2x}{x+\sqrt{x}}\)

a: \(A=\sqrt{x}+\dfrac{\sqrt{x}\left(1+2\sqrt{x}\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}=\sqrt{x}+\dfrac{2\sqrt{x}+1}{\sqrt{x}+1}\)

Khi x=4 thì \(A=2+\dfrac{2\cdot2+1}{2+1}=2+\dfrac{5}{3}=\dfrac{11}{3}\)

b: Khi x=(2-căn 3)^2 thì \(A=2-\sqrt{3}+\dfrac{2\left(2-\sqrt{3}\right)+1}{2-\sqrt{3}+1}\)

\(=2-\sqrt{3}+\dfrac{4-2\sqrt{3}+1}{3-\sqrt{3}}\)

\(=2-\sqrt{3}+\dfrac{5-2\sqrt{3}}{3-\sqrt{3}}\)

\(=\dfrac{\left(2-\sqrt{3}\right)\left(3-\sqrt{3}\right)+5-2\sqrt{3}}{3-\sqrt{3}}\)

\(=\dfrac{6-2\sqrt{3}-3\sqrt{3}+3+5-2\sqrt{3}}{3-\sqrt{3}}\)

\(=\dfrac{14-7\sqrt{3}}{3-\sqrt{3}}\)

d: A=2

=>\(\dfrac{x+\sqrt{x}+2\sqrt{x}+1}{\sqrt{x}+1}=2\)

=>\(x+3\sqrt{x}+1=2\left(\sqrt{x}+1\right)=2\sqrt{x}+2\)

=>\(x+\sqrt{x}-1=0\)

=>\(\left[{}\begin{matrix}\sqrt{x}=\dfrac{-1+\sqrt{5}}{2}\left(nhận\right)\\\sqrt{x}=\dfrac{-1-\sqrt{5}}{2}\left(loại\right)\end{matrix}\right.\Leftrightarrow x=\dfrac{6-2\sqrt{5}}{4}=\dfrac{3-\sqrt{5}}{2}\)

19 tháng 12 2021

a: \(A=\dfrac{5x-15+2x+6-3x^2+2x+9}{\left(x-3\right)\left(x+3\right)}=\dfrac{-3x^2+9x}{\left(x-3\right)\left(x+3\right)}=\dfrac{-3x}{x+3}\)

19 tháng 12 2021

\(ĐK:x\ne\pm3\\ a,A=\dfrac{5x-15+2x+6-3x^2+2x+9}{\left(x+3\right)\left(x-3\right)}\\ A=\dfrac{-3x^2+9x-1}{\left(x-3\right)\left(x+3\right)}\\ b,\left|x-2\right|=1\Leftrightarrow x=1\left(x\ne3\right)\\ \Leftrightarrow A=\dfrac{-3+9-1}{\left(-2\right)\cdot4}=\dfrac{5}{-8}\)

10 tháng 1 2022

\(a,A=\dfrac{x^2-x-2}{x^2-1}+\dfrac{1}{x-1}-\dfrac{1}{x+1}\)

\(\Rightarrow A=\dfrac{x^2-x-2}{\left(x-1\right)\left(x+1\right)}+\dfrac{x+1}{\left(x-1\right)\left(x+1\right)}-\dfrac{x-1}{\left(x-1\right)\left(x+1\right)}\)

\(\Rightarrow A=\dfrac{x^2-x-2x+x+1-x+1}{\left(x-1\right)\left(x+1\right)}\)

\(\Rightarrow A=\dfrac{x^2-3x+2}{\left(x-1\right)\left(x+1\right)}\)

\(\Rightarrow A=\dfrac{x^2-2x-x+2}{\left(x-1\right)\left(x+1\right)}\)

\(\Rightarrow A=\dfrac{x\left(x-2\right)-\left(x-2\right)}{\left(x-1\right)\left(x+1\right)}\)

\(\Rightarrow A=\dfrac{\left(x-1\right)\left(x-2\right)}{\left(x-1\right)\left(x+1\right)}\)

\(\Rightarrow A=\dfrac{x-2}{x+1}\)

\(b,A=\dfrac{3}{4}\\ \Rightarrow\dfrac{x-2}{x+1}=\dfrac{3}{4}\\ \Rightarrow4\left(x-2\right)=3\left(x+1\right)\\ \Rightarrow4x-8=3x+3\\ \Rightarrow4x-8-3x-3=0\\ \Rightarrow x-11=0\\ \Rightarrow x=11\)

\(c,\left|x-3\right|=2\Rightarrow\left[{}\begin{matrix}x-3=2\\x-3=-2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=5\\x=1\end{matrix}\right.\)

Thay x=5 vào A ta có:

\(A=\dfrac{x-2}{x+1}=\dfrac{5-2}{5+1}=\dfrac{3}{6}=\dfrac{1}{2}\)

Thay x=1 vào A ta có:

\(A=\dfrac{x-2}{x+1}=\dfrac{1-2}{1+1}=\dfrac{-1}{2}\)

 

a) Thay x=1 vào A, ta được:

\(A=\dfrac{3\cdot1+2}{1-3}=\dfrac{3+2}{-2}=\dfrac{-5}{2}\)

Thay x=2 vào A, ta được:

\(A=\dfrac{3\cdot2+2}{2-3}=\dfrac{6+2}{-1}=-8\)

Thay \(x=\dfrac{5}{2}\) vào A, ta được:

\(A=\left(3\cdot\dfrac{5}{2}+2\right):\left(\dfrac{5}{2}-3\right)=\dfrac{19}{2}:\dfrac{-1}{2}=-19\)

a: \(A=\left(\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{2}{x-2}+\dfrac{1}{x+2}\right)\cdot\dfrac{x+2}{6}\)

\(=\dfrac{x-2x-4+x-2}{\left(x+2\right)\left(x-2\right)}\cdot\dfrac{x+2}{6}=\dfrac{-6}{6}\cdot\dfrac{1}{x-2}=\dfrac{-1}{x-2}\)

b: x=2 ko thỏa mãn ĐKXĐ

=>Loại

Khi x=3 thì A=-1/(3-2)=-1

c: A=2

=>x-2=-1/2

=>x=3/2