\(\hept{\begin{cases}4x-4y+2z=1\\8x+4y=z=9\end{cases}}\)
a. Giải hệ với z=2
b. Biểu thị x và y theo z
c. Tìm giá trị nhỏ nhất và lướn nhất của biểu thức.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. \(\hept{\begin{cases}x^2+2y^2=4x-1\\y^2+2x^2=4y-1\end{cases}\Leftrightarrow\hept{\begin{cases}\left(x^2+2y^2\right)-\left(y^2+2x^2\right)=4x-1-\left(4y-1\right)\\\left(x^2+2y^2\right)+\left(y^2+2x^2\right)=4x-1+4y-1\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}y^2-x^2=4x-4y\left(1\right)\\3\left(x^2+y^2\right)=4\left(x+y\right)-2\left(2\right)\end{cases}}\)
Từ ( 1 ) \(\Rightarrow\left(y-x\right)\left(x+y\right)-4\left(x-y\right)=0\Leftrightarrow\left(y-x\right)\left(x+y+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=y\\x+y=-4\end{cases}}\)
Với x = y thì thay vào ( 2 ), ta được : \(6x^2-8x+2=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{1}{3}\end{cases}}\)
Với x + y = -4 thay vào ( 2 ), ta được : \(3\left[\left(x+y\right)^2-2xy\right]=4.\left(-4\right)-2\)
\(\Leftrightarrow-6xy=-66\Leftrightarrow xy=11\)
Ta được hệ phương trình : \(\hept{\begin{cases}x+y=-4\\xy=11\end{cases}}\) mà hệ phương trình này vô nghiệm
2. Ta cần chứng minh BĐT : \(a^3+b^3\ge ab\left(a+b\right)\) với a,b > 0
Thật vậy, xét hiệu :
\(a^3+b^3-ab\left(a+b\right)=a^2\left(a-b\right)+b^2\left(b-a\right)=\left(a-b\right)\left(a^2-b^2\right)=\left(a-b\right)^2\left(a+b\right)\)\(\ge\)0
Áp dụng BĐT trên, ta có : \(x^3+y^3\ge xy\left(x+y\right)\Leftrightarrow x^3+y^3+1\ge xy\left(x+y\right)+xyz=xy\left(x+y+z\right)\)
Tương tự : ....
\(\Rightarrow\frac{1}{x^3+y^3+1}+\frac{1}{y^3+z^3+1}+\frac{1}{x^3+z^3+1}\le\frac{1}{xy\left(x+y+z\right)}+\frac{1}{yz\left(x+y+z\right)}+\frac{1}{xz\left(x+y+z\right)}\)
\(=\frac{x+y+z}{xyz\left(x+y+z\right)}=\frac{1}{xyz}=1\)
Vậy GTLN của biểu thức là 1 khi x = y = z = 1
a) Cộng từng vế 2 Pt có : 3x+2z=5\(=>x=\frac{5-2z}{3}\)Thay vào pt1 tìm đc y....
lm đc câu b rồi nhưng lười nhấn máy tính lắm nên có j nhắn tin cho mk sau nhé
a)
\(x^3+y^3+3\left(x^2+y^2\right)+4\left(x+y\right)+4=0\)
\(\Leftrightarrow\left(x^3+3x^2+3x+1\right)+\left(y^3+3y^2+3y+1\right)+\left(x+y+2\right)=0\)
\(\Leftrightarrow\left(x+1\right)^3+\left(y+1\right)^3+\left(x+y+2\right)=0\)
\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2\right]+\left(x+y+2\right)=0\)
\(\Leftrightarrow\left(x+y+2\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1\right]=0\)
Lại có :\(\left(x+1\right)^2-\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2+1=\left[\left(x+1\right)-\frac{1}{2}\left(y+1\right)\right]^2+\frac{3}{4}\left(y+1\right)^2+1>0\)
Nên \(x+y+2=0\Rightarrow x+y=-2\)
Ta có :
\(M=\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}=\frac{-2}{xy}\)
Vì \(4xy\le\left(x+y\right)^2\Rightarrow4xy\le\left(-2\right)^2\Rightarrow4xy\le4\Rightarrow xy\le1\)
\(\Rightarrow\frac{1}{xy}\ge\frac{1}{1}\Rightarrow\frac{-2}{xy}\le-2\)
hay \(M\le-2\)
Dấu "=" xảy ra khi \(x=y=-1\)
Vậy \(Max_M=-2\)khi \(x=y=-1\)
c) ( Mình nghĩ bài này cho x, y, z ko âm thì mới xảy ra dấu "=" để tìm Min chứ cho x ,y ,z dương thì ko biết nữa ^_^ , mình làm bài này với điều kiện x ,y ,z ko âm nhé )
Ta có :
\(\hept{\begin{cases}2x+y+3z=6\\3x+4y-3z=4\end{cases}\Rightarrow2x+y+3z+3x+4y-3z=6+4}\)
\(\Rightarrow5x+5y=10\Rightarrow x+y=2\)
\(\Rightarrow y=2-x\)
Vì \(y=2-x\)nên \(2x+y+3z=6\Leftrightarrow2x+2-x+3z=6\)
\(\Leftrightarrow x+3z=4\Leftrightarrow3z=4-x\)
\(\Leftrightarrow z=\frac{4-x}{3}\)
Thay \(y=2-x\)và \(z=\frac{4-x}{3}\)vào \(P\)ta có :
\(P=2x+3y-4z=2x+3\left(2-x\right)-4.\frac{4-x}{3}\)
\(\Rightarrow P=2x+6-3x-\frac{16}{3}+\frac{4x}{3}\)
\(\Rightarrow P=\frac{x}{3}+\frac{2}{3}\ge\frac{2}{3}\)( Vì \(x\ge0\))
Dấu "=" xảy ra khi \(x=0\Rightarrow\hept{\begin{cases}y=2\\z=\frac{4}{3}\end{cases}}\)( Thỏa mãn điều kiện y , z ko âm )
Vậy \(Min_P=\frac{2}{3}\)khi \(\hept{\begin{cases}x=0\\y=2\\z=\frac{4}{3}\end{cases}}\)
áp dụng bđt \(\frac{a+b}{2}\ge\sqrt{ab}\),dấu "=" xảy ra <=>a=b
\(\sqrt{\left(4x-1\right).1}\le\frac{1+4x-1}{2}=2x\)
Tương tự \(\sqrt{\left(4y-1\right).1}\le\frac{1+4y-1}{2}=2y;\sqrt{\left(4z-1\right).1}\le\frac{1+4z-1}{2}=2z\)
Cộng theo vế:
=>\(2\left(x+y+z\right)\ge\sqrt{4x-1}+\sqrt{4y-1}+\sqrt{4z-1}\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\sqrt{4x-1}=1\\\sqrt{4y-1}=1\\\sqrt{4z-1}=1\end{cases}}< =>x=y=z=\frac{1}{2}\)
Giả sử \(y\ge z\Rightarrow\frac{4x}{1+4x}\ge\frac{4y}{1+4y}\Leftrightarrow1-\frac{1}{1+4x}\ge1-\frac{1}{1+4y}\)
\(\Leftrightarrow\frac{1}{1+4x}\le\frac{1}{1+4y}\Leftrightarrow1+4x\ge1+4y\Leftrightarrow x\ge y\)
\(\Rightarrow\frac{4z}{1+4z}\ge\frac{4x}{1+4x}\).Tương tự:\(z\ge x\).Nên \(x=y=z\).
Thế vào mà giải nhé