K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2018

Ta thấy: \(n^2-n+2=n^2-\frac{1}{2}.2.n+\frac{1}{4}+\frac{7}{4}=\left(n-\frac{1}{2}\right)^2+\frac{7}{4}\)

Vì (n-1/2)^2 là số chính phương mà 7/4 ko là số chính phương nên x^2 - n + 2 không phải là số chính phương với mọi n >= 2

9 tháng 2 2021

Giả sử ngược lại \(2^n-1\) là 1 số chính phương lẻ

Khi đó \(2^n-1=\left(2k+1\right)^2\)  \(\left(k\inℕ^∗\right)\)

\(\Leftrightarrow2^n-1=4k^2+4k+1\)

\(\Leftrightarrow2^n=4k^2+4k+2\) 

Nhận thấy VP chia hết cho 2 nhưng không chia hết cho 4

Mà n>1 nên 2n chia hết cho 4

=> vô lý =>  điều g/s sai

=> 2n - 1 không là 1 SCP

9 tháng 12 2017

Đặt \(n^3-n+2=a^2\)

<=>  \(n\left(n-1\right)\left(n+1\right)+2=a^2\)

Vì \(n\left(n-1\right)\left(n+1\right)\equiv0\left(mod3\right)\)

=> \(n\left(n-1\right)\left(n+1\right)+2\equiv2\left(mod3\right)\)

Mà   1 số chính phương chia 3 dư 0 hoặc 1

=>  \(n^3-n+2\) không thể là số chính phương

29 tháng 3 2022

-Ta c/m: Với mọi số tự nhiên n thì \(\left(n+2021\right)^2+2022< \left(n+2022\right)^2\)

\(\Leftrightarrow\left(n+2021\right)^2+2022-\left(n+2022\right)^2< 0\)

\(\Leftrightarrow\left(n+2021-n-2022\right)\left(n+2021+n+2022\right)+2022< 0\)

\(\Leftrightarrow-\left(2n+4043\right)+2022< 0\)

\(\Leftrightarrow-2n-4043+2022< 0\)

\(\Leftrightarrow-2n-2021< 0\) (đúng do n là số tự nhiên)

-Từ điều trên ta suy ra:

\(\left(n+2021\right)^2< \left(n+2021\right)^2+2022< \left(n+2022\right)^2\)

-Vậy với mọi số tự nhiên n thì \(\left(n+2021\right)^2+2022\) không là số chính phương.

 

6 tháng 3 2020

a, 3n + 2 - 2n + 2 + 3n - 2n

= 3n(32 + 1) - 2n(22 + 1)

= 10.3n - 5.2n

= 10.3n - 10.2n - 1

= 10(3n - 2n - 1) chia hết cho 10

b, S = abc + bca + cab

= 100a + 10b + c + 100b + 10c + a + 100c + 10a + b

= 111a + 111b + 11c

= 111(a + b + c)

= 3.37(a+b+c)

giả sử S là số chính phương thì S phải chứa thừa số nguyên tố 37 với số mũ chẵn trở lên 

=> 3(a + b + c) chia hết cho 37

=> a + b + c chia hết cho 37

vì a;b;c là chữ số => a + b + c lớn nhất = 27

=> vô lí

vậy S không là số chính phương

6 tháng 3 2020

\(3^{n+2}-2^{n+2}+3^n-2^n\)

\(3^{n+2}+3^n-2^n-2^{n+2}\)

=\(\left(3^{n+2}+3^n\right)-\left(2^n-2^{n+2}\right)\)

\(\left(3^n.3^2+3^n\right)-\left(2^n+2^n.2^2\right)\)

\(3^n.\left(3^2+1\right)-2^n.\left(1+2^2\right)\)

=\(3^n.10-2^{n-1}.5.2\)

\(3^n.10-2^{n-1}.10=10.\left(3^n-2^{n-1}\right)\)chia hết cho 10

suy ra \(3^{n+2}-2^{n+2}+3^n-2^n\) chia hết cho 10

11 tháng 1 2017

mk kobt

mk mới hok lp 5

xin  lỗibn

[​IMG]

11 tháng 1 2017

Tao không biết và tao cũng chẳng quan tâm

3 tháng 10 2016

Vì n nguyên dương nên ta có \(n^2< n^2+n+1< n^2+2n+1\)

hay \(n^2< n^2+n+1< \left(n+1\right)^2\)

Mà n và (n+1) là hai số chính phương liên tiếp và \(n^2+n+1\)là số kẹp giữa  hai số ấy nên không thể là số chính phương.