Cho x,y > 0. Tìm GTNN của:
P = \(\frac{x^2+12}{x+y}+y\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\frac{2x+y+z-15}{x}+\frac{x+2y+z-15}{y}+\frac{x+y+2z-15}{z}\)
\(M-3=\frac{x+y+z-15}{x}+\frac{x+y+z-15}{y}+\frac{x+y+z-15}{z}\)
\(M-3=\left(x+y+z-15\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(\Rightarrow M\ge\left(x+y+z-15\right)\cdot\frac{9}{x+y+z}+3=\frac{3}{4}\)
\("="\Leftrightarrow x=y=z=4\)
Đặt \(t=\frac{x}{y}+\frac{y}{x}\). Vì x; y > 0 => \(\frac{x}{y}>0;\frac{y}{x}>0\). Áp dung BDT Cô - si có:
\(t=\frac{x}{y}+\frac{y}{x}\ge2.\sqrt{\frac{x}{y}.\frac{y}{x}}=2\)
Có: \(\frac{x^2}{y^2}+\frac{y^2}{x^2}=\left(\frac{x}{y}+\frac{y}{x}\right)^2-2.\frac{x}{y}.\frac{y}{x}=t^2-2\)
\(\frac{x^4}{y^4}+\frac{y^4}{x^4}=\left(\frac{x^2}{y^2}+\frac{y^2}{x^2}\right)^2-2.\frac{x^2}{y^2}.\frac{y^2}{x^2}=\left(t^2-2\right)^2-2=t^4-4t^2+4-2=t^4-4t^2+2\)
Vậy \(A=t^4-4t^2+2-\left(t^2-2\right)+t=t^4-5t^2+t+4\)
=> \(A=\left(t^4-8t^2+16\right)+3t^2+t-12=\left(t^2-4\right)^2+3t^2+t-12=\left(t^2-4\right)^2+3\left(t^2-4\right)+t\ge2\)với mọi \(t\ge2\)
Vì \(t\ge2\) => \(t^2\ge4\Rightarrow t^2-4\ge0\)
Vậy Min A = 2 khi t = 2 <=> \(\frac{x}{y}+\frac{y}{x}=2\) <=> x = y = 1
P= \(\dfrac{x}{\sqrt{y}}\)+ \(\dfrac{y}{\sqrt{z}}\)+ \(\dfrac{z}{\sqrt{x}}\)
bn giải giùm mik bài này đc ko cảm ơn bn
Chứng minh rằng với mọi n >2 thì số n ^ 2 - n + 2 không phải là số chính phương