K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2018

x=1 , y=0 nhé

mk đi

14 tháng 8 2018

\(y=\frac{x-1}{2x+3}\)

\(\Rightarrow2xy+3y=xy-y\)

\(\Rightarrow2xy+3y-xy+y=0\)

\(\Rightarrow xy+4y=0\)

\(\Rightarrow\left(x+4\right)y=0\)

\(\Rightarrow\hept{\begin{cases}x=-4\\y=0\end{cases}}\)

4 tháng 8 2018

Do p là số nguyên tố nên ta có các trường hợp:

+ Với \(p=3\)thì \(\hept{\begin{cases}p+8=3+8=11\\p+10=3+10=13\end{cases}}\) là các số nguyên tố (chọn)

\(\orbr{\begin{cases}p=3k+1\\p=3k+2\end{cases}}\) \(\left(k\in N\right)\)

+Với \(p=3k+1\)thì \(p+8=3k+1+8\)

\(=3k+9=3\left(k+3\right)⋮3\)\(\Rightarrow p+8\text{ }\)là hợp số (loại)

+Với \(p=3k+2\)thì \(p+10=3k+2+10\)

\(=3k+12=3\left(k+4\right)⋮3\)\(\Rightarrow p+10\text{ }\)là hợp số (loại)

Vậy \(p=3\)thỏa mãn đề

7 tháng 8 2018

Sao lại có 3k + 1 và 3k + 2 ạ

1 tháng 8 2018

Đặt \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)

\(\Rightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)

\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}+\frac{1}{2^{100}}\right)\)

\(A=1-\frac{1}{2^{100}}\)

\(A=\frac{2^{100}-1}{2^{100}}\)

Tham khảo nhé~

1 tháng 8 2018

\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{100}}\)

\(\Rightarrow\)\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)

\(\Rightarrow\)\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)

\(\Rightarrow\)\(A=1-\frac{1}{2^{100}}\)

27 tháng 9 2023

\(x^2+2y^2-2xy+4y+3< 0\)

\(\Rightarrow x^2-2xy+y^2+y^2+4y+4-1< 0\)  

\(\Rightarrow\left(x^2-2xy+y^2\right)+\left(y^2+4y+4\right)-1< 0\)

\(\Rightarrow\left(x-y\right)^2+\left(y+2\right)^2-1< 0\)

Mà: \(\left\{{}\begin{matrix}\left(x-y\right)^2\ge0\forall x,y\\\left(y+2\right)^2\ge0\forall y\end{matrix}\right.\) 

\(\Rightarrow\left(x-y\right)^2+\left(y+2\right)^2-1\ge-1\forall x,y\)

Mặt khác: \(\left(x-y\right)^2+\left(y+2\right)^2-1< 0\)

Dấu "=" xảy ra:

\(\left\{{}\begin{matrix}x-y=0\\y+2=0\end{matrix}\right.\)

\(\Rightarrow x=y=-2\)

Vậy: .... 

27 tháng 9 2023

Cảm ơn anh/chị/bạn nhiều ạ!

30 tháng 7 2018

Ủa mấy cái này tưởng mấy em được học rồi nhỉ?

a, \(|3x-4|+|4y+1|=0\)

\(\Rightarrow\hept{\begin{cases}|3x-4|=0\\|4y+1|=0\end{cases}\Leftrightarrow\hept{\begin{cases}3x-4=0\\4y+1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{4}{3}\\y=-\frac{1}{4}\end{cases}}}\)

b, Lập bảng xét dấu giá trị tuyệt đối

\(x\)                                   \(-\frac{5}{2}\)                                   \(\frac{1}{3}\)

\(2x+5\)  \(-5-2x\)   \(0\)  \(2x+5\)                  \(||\) \(2x+5\)

\(3x-1\)  \(1-3x\)       \(||\)\(1-3x\)                    \(0\)\(3x-1\)

\(VT\)                                    \(||\)                                      \(||\)

TH1: \(x< -\frac{5}{2}\)\(\Rightarrow\hept{\begin{cases}|2x+5|=-5-2x\\|3x-1|=1-3x\end{cases}}\)

\(\Rightarrow-5-2x+1-3x=3\)\(\Leftrightarrow-4-5x=3\Leftrightarrow x=-\frac{7}{5}\left(L\right)\)

TH2: \(-\frac{5}{2}\le x\le\frac{1}{3}\)\(\Rightarrow\hept{\begin{cases}|2x+5|=2x+5\\|3x-1|=1-3x\end{cases}}\)

\(\Rightarrow2x+5+1-3x=3\)\(\Leftrightarrow6-x=3\Leftrightarrow x=3\left(L\right)\)

TH3: \(x>\frac{1}{3}\)\(\Rightarrow\hept{\begin{cases}2x+5|=2x+5\\|3x-1|=3x-1\end{cases}}\)

\(\Rightarrow2x+5+3x-1=3\)\(\Leftrightarrow5x+4=3\Leftrightarrow5x=-1\Leftrightarrow x=-\frac{1}{5}\left(L\right)\)

Vậy PT đã cho vô nghiệm.

P/S: Không hiểu ở đâu thì nhắn chị nhé.

3 tháng 8 2018

ta có:

\(\frac{6n-7}{4n-1}=1.\frac{6n-7}{4n-1}=\frac{3}{3}.\frac{6n-7}{4n-1}=\frac{3\left(6n-7\right)}{3\left(4n-1\right)}\)\(=\frac{12n-14}{12n-3}=\frac{12n-3}{12n-3}-\frac{11}{12n-3}\)

\(=1-\frac{11}{12n-3}=>12n-3\)thuộc tập hợp ước của 11

=>12n-3=1=>n=\(\frac{1}{3}\) (loại) vì ko thuộc N

12n-1=11=>n=1

Vậy n=1

Nhớ tk nha=)))

Để 1x5y chia hết cho 2 thì y = 0 ,  2 , 4 , 6 , 8

Để 1x5y chia hết cho 5 thì y = 0 , 5 

=> y = 0 

Để 1x5y chia hết cho 3 thì 1 + x + 5 + 0 = 6+ x chia hết cho 3

=> x = 0 , 3 ,6 ,9 

Để 1x5y chia hết cho 6 thì 1 + x + 5 + 0 = 6+x chia hết cho 6 

=> x = 0 ; 6 

Để 1x5y chia hết cho 9 thì 1 + x + 5 + 0 = 6 + x chia hết cho 9 

=> x = 3 

=> Ko tồn tại x 

1 tháng 2 2019

Vì \(2x+1\): 2 dư 1 

Nên \(\left(2x+1\right)\in\left\{3;-3;-1;1\right\}\)

Khi \(\hept{\begin{cases}2x+1=3\\y-5=4\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=9\end{cases}}}\)

Khi \(\hept{\begin{cases}2x+1=-3\\y-5=-4\end{cases}\Rightarrow\hept{\begin{cases}x=-2\\y=1\end{cases}}}\)

Khi \(\hept{\begin{cases}2x+1=-1\\y-5=-12\end{cases}\Rightarrow\hept{\begin{cases}x=-1\\y=-7\end{cases}}}\)

Khi \(\hept{\begin{cases}2x+1=1\\y-5=12\end{cases}\Rightarrow\hept{\begin{cases}x=0\\y=17\end{cases}}}\)

Vậy \(\left(x;y\right)\in\left\{\left(0;17\right);\left(-1;-7\right);\left(-2;1\right);\left(1;9\right)\right\}\)

1 tháng 2 2019

Tôi nghĩ ra cách giải rồi. Cách giải của cậu chưa hay.Nhưng giờ đang bận làm bài tập tết nên khi nào rảnh bạn chữa cho.Cố gắng nghĩ cách hay hơn nhé!