Chứng minh
a//b
b//c suy ra a//b//c
A a B b C c 70 110 110
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\widehat{D_1}+\widehat{D_2}=180^0\)(kề bù)
\(\Rightarrow\widehat{D_1}=180^0-110^0=70^0\)
\(\Rightarrow\widehat{D_1}=\widehat{C_1}=70^0\)
Mà 2 góc này đồng vị
=> a//b
b) Ta có: a//b,a⊥c
=> c⊥b(từ vuông góc đến song song)
a) Ta thấy:
\(\widehat{BED}+\widehat{EBC}=180^o\)
Mà hai góc này ở vị trí trong cùng phía
\(\Rightarrow DE//BC\)
b) Mà: DE//BC
\(\Rightarrow\widehat{EDC}+\widehat{BCD}=180^o\)(hai góc trong cùng phía)
\(\Rightarrow\widehat{EDC}=180^o-\widehat{BCD}=180^o-40^o=140^o\)
Ta lại có:
\(\widehat{EDC}\) đối đỉnh \(\widehat{xDC}\)
\(\Rightarrow\widehat{xDC}=\widehat{EDC}=140^o\)
a) Ta có:
∠BED + ∠EBC = 110⁰ + 70⁰ = 180⁰
Mà ∠BED và ∠EBC là hai góc trong cùng phía
⇒ DE // BC
b) Do DE // BC
⇒ ∠EDC + ∠DCB = 180⁰ (hai góc trong cùng phía)
⇒ ∠EDC = 180⁰ - ∠DCB
= 180⁰ - 40⁰
= 140⁰
Do DE // BC
⇒ ∠xDC = ∠DCB = 40⁰ (so le trong)
Bài 2: ta thấy A và B ở vị trí trong cùng phía , A + B = 180 độ =>a//b(1)
Ta lại thấy B , C ở vị trí đồng vị , B=C=70 độ =>b//c(2)
Từ 1,2 =>a//b//c
\(a,\dfrac{a}{c}=\dfrac{c}{b}\Leftrightarrow\dfrac{a^2}{c^2}=\dfrac{c^2}{b^2}=\dfrac{a^2+c^2}{b^2+c^2}\left(1\right)\)
Mà \(\dfrac{a}{c}=\dfrac{c}{b}\Leftrightarrow ab=c^2\Leftrightarrow\dfrac{a}{b}=\dfrac{c^2}{b^2}\left(2\right)\)
Từ \(\left(1\right)\left(2\right)\tođpcm\)
\(b,\dfrac{a}{c}=\dfrac{c}{b}\Leftrightarrow ab=c^2\)
\(\Leftrightarrow\dfrac{b^2-a^2}{a^2+c^2}=\dfrac{\left(b-a\right)\left(b+a\right)}{a^2+ab}=\dfrac{\left(b-a\right)\left(b+a\right)}{a\left(a+b\right)}=\dfrac{b-a}{a}\left(đpcm\right)\)
Trên tia AD lấy điểm E sao cho AE=AB
Xét tam giác AEC và tam giác ABC có :
\(AE=AB\left(gt\right)\)
\(\widehat{A}_1=\widehat{A}_2\)( vì phân giác )
\(AC\): Cạnh chung
Do đó tam giác AEC= tam giác ABC (c-g-c)
\(\Rightarrow\widehat{E}_1=\widehat{B}=110^o\)
và \(CB=CE\) ( 2 cạnh T.ứng)
Vì E nằm giữa A và D nên ta có :
\(\widehat{E}_2=70^o=\widehat{D}\)
\(\Rightarrow CE=CD\)
\(\Rightarrow CB=CD\) (đpcm)
Ta có tổng 4 góc trong tứ giác là: \(360^o\)
\(\Rightarrow\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)
Hay: \(60^o+110^o+\widehat{C}+70^o=360^o\)
\(\Rightarrow\widehat{C}=360^o-\left(110^o+60^o+70^o\right)120^o\)
Vậy chọn đáp án A
xét tứ giác ABCD có : ∠A + ∠B + ∠C + ∠D = 360 ( Định lí)
=> 80 + 70 +110 + ∠D = 360
=> ∠D = 360 – 260
=> ∠D = 100
Chúc bạn học tốt. ^_^