K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2021

Ta có \(\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3\)

\(=\left(x-y\right)^3+\left(y-x+x-z\right)^3+\left(z-x\right)^3\\ =\left(x-y\right)^3+\left(y-x\right)^3+3\left(y-x\right)\left(x-z\right)\left(y-x+x-z\right)+\left(x-z\right)^3+\left(z-x\right)^3\\ =\left(x-y\right)^3-\left(x-y\right)^3+\left(x-z\right)^3-\left(x-z\right)^3+3\left(y-x\right)\left(x-z\right)\left(y-z\right)\\ =3\left(y-x\right)\left(x-z\right)\left(y-z\right)\)

Thay vào pt

\(\Leftrightarrow\left(y-x\right)\left(x-z\right)\left(y-z\right)=10\)

Dễ thấy \(y-z\) là tổng của \(y-x;x-z\)

Mà \(Ư\left(10\right)=\left\{-10;-5;-2;-1;1;2;5;10\right\}\) và ko có số nào là tổng 2 số còn lại có tích bằng 10

Vậy pt vô nghiệm

 

 

10 tháng 10 2021

\(3\left(y-x\right)\left(x-z\right)\left(y-z\right)=30\) chứ

28 tháng 1 2018

bạn ơi đề khó nhìn vậy  

28 tháng 1 2018
bạn giúp mk vs đk k bạn
28 tháng 6 2023

 Bài 1: Bài này số nhỏ nên chỉ cần chặn miền giá trị của \(x\) rồi xét các trường hợp thôi nhé. Ta thấy \(3^x< 35\Leftrightarrow x\le3\). Nếu \(x=0\) thì \(VT=2\), vô lí. Nếu \(x=1\) thì \(VT=5\), cũng vô lí. Nếu \(x=2\) thì \(VT=13\), vẫn vô lí. Nếu \(x=3\) thì \(VT=35\), thỏa mãn. Vậy, \(x=3\).

 Bài 2: Nếu \(x=0\) thì pt đã cho trở thành \(0!+y!=y!\Leftrightarrow0=1\), vô lí,

Nếu \(x=y\) thì pt trở thành \(2x!=\left(2x\right)!\) \(\Rightarrow\left(x+1\right)\left(x+2\right)...\left(2x\right)=2\) \(\Leftrightarrow x=1\Rightarrow y=1\)

Nếu \(x\ne y\) thì không mất tính tổng quát, giả sử \(1< y< x\) thì \(x!+y!< 2x!\le\left(x+1\right)x!=\left(x+1\right)!< \left(x+y\right)!\) nên pt đã cho không có nghiệm trong trường hợp này.

Như vậy, \(x=y=1\)

 Bài 3: Bổ sung đề là pt không có nghiệm nguyên dương nhé, chứ nếu nghiệm nguyên thì rõ ràng \(\left(x,y\right)=\left(0,19\right)\) là một nghiệm cũa pt đã cho rồi.

Giả sử pt đã cho có nghiệm nguyên dương \(\left(x,y\right)\)

Khi đó \(x,y< 19\). Không mất tính tổng quát ta có thể giả sử \(1< y\le x< 19\). Khi ấy \(x^{17}+y^{17}=19^{17}\ge\left(x+1\right)^{17}=x^{17}+17x^{16}+...>x^{17}+17x^{16}\), suy ra \(y^{17}>17x^{16}\ge17y^{16}\) \(\Rightarrow y>17\). Từ đó, ta thu được \(17< y\le x< 19\) nên \(x=y=18\). Thử lại thấy không thỏa mãn. 

Vậy pt đã cho không có nghiệm nguyên dương.

 

28 tháng 6 2023

Chị độc giải sau khi em biết làm thôi à.

AH
Akai Haruma
Giáo viên
2 tháng 3 2021

Lời giải:

a)

Khi $m=1$ thì HPT trở thành:\(\left\{\begin{matrix} x-y=2\\ x+y=1\end{matrix}\right.\Rightarrow \left\{\begin{matrix} 2x=2+1\\ 2y=1-2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=\frac{3}{2}\\ y=\frac{-1}{2}\end{matrix}\right.\)

b) 

HPT \(\Leftrightarrow \left\{\begin{matrix} mx-y=2\\ x=1-my\end{matrix}\right.\Rightarrow m(1-my)-y=2\)

\(\Leftrightarrow y(m^2+1)=m-2\Rightarrow y=\frac{m-2}{m^2+1}\)

\(x=1-my=1-\frac{m^2-2m}{m^2+1}=\frac{1+2m}{m^2+1}\)

Để $x+y=-1$

$\Leftrightarrow \frac{m-2}{m^2+1}+\frac{1+2m}{m^2+1}=-1$

$\Leftrightarrow \frac{3m-1}{m^2+1}=-1$

$\Rightarrow 3m-1=-m^2-1$

$\Leftrightarrow m^2+3m=0\Rightarrow m=0$ hoặc $m=-3$

 

 

Bài 2: 

a) Ta có: \(\Delta=\left(m-1\right)^2-4\cdot1\cdot\left(-m^2-2\right)\)
\(=m^2-2m+1+4m^2+8\)

\(=5m^2-2m+9>0\forall m\)

Do đó, phương trình luôn có hai nghiệm phân biệt với mọi m

6 tháng 4 2021

Bài 1:

ĐKXĐ \(2x\ne y\)

Đặt \(\dfrac{1}{2x-y}=a;x+3y=b\)

HPT trở thành

\(\left\{{}\begin{matrix}a+b=\dfrac{3}{2}\\4a-5b=-2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{3}{2}-b\\4\left(\dfrac{3}{2}-b\right)-5b=-2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{3}{2}-b\\6-9b=-2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{8}{9}\\a=\dfrac{11}{18}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+3y=\dfrac{8}{9}\\2x-y=\dfrac{18}{11}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=2x-\dfrac{18}{11}\\x+3\left(2x-\dfrac{18}{11}\right)=\dfrac{8}{9}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{82}{99}\\y=\dfrac{2}{99}\end{matrix}\right.\)

=>xy-2x=xy-4x+2y-8 và 2xy+7x-6y-21=2xy+6x-7y-21

=>2x-2y=-8 và x+y=0

=>x-y=-4 và x+y=0

=>2x=-4 và x+y=0

=>x=-2 và y=2