K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2021

giúp mình với

9 tháng 8 2021

Viết n+1 số đã cho dưới dạng : 

a1=2k1b1,a2=2k2b2,...,an+1=2kn+1bn+1a1=2k1b1,a2=2k2b2,...,an+1=2kn+1bn+1

trong đó b1,b2,...,bn+1 là các số lẻ. Ta có 1≤b1,b2,...,bn+1≤2n−11≤b1,b2,...,bn+1≤2n−1

Mà trong khoảng từ 1 đến 2n-1 có n số lẻ nên tồn tại 2 số p khác q sao cho bp=bqbp=bq

Khi đó apap và aqaq có 1 số là bội của số kia

đúng nhớ k cho mình 1 cái nha chúc bn hok tốt

28 tháng 6 2021

https://www.youtube.com/watch?v=TA-H3IRTRLw

Xem đi;đoạn 16:52 , toi không học dirichlet nên chỉ hiểu sơ sơ :)

28 tháng 6 2021

haha

11 tháng 2 2020

Giả sử trong 2n số nguyên dương đầu tiên có đúng m số nguyên tố là p1;p2,...;pm.Dễ chứng minh được rằng m⩽n

Chia 2n số nguyên dương đó thành m+1 tập con (có thể giao nhau) :A0;A1;A2;...;Am, trong đó :

A0={1}

Ai (1⩽i⩽m) gồm pi và tất cả các bội của nó trong 2n số nguyên dương đầu tiên.

Xét 2 trường hợp:

+) m < n 

   Khi đó m + 1 < n + 1⇒ trong n+1 số bất kỳ (chọn trong 2n số đó) chắc chắn có 2 số thuộc cùng 1 tập con và là bội của nhau, đó là 2 số cần tìm.

+)  m = n

   + Nếu trong n+1 số đó có số 1 (thuộc tập Ao) thì đpcm là hiển nhiên.

   + Nếu trong n+1 số đó không có số nào thuộc tập A0 thì chúng chỉ nằm trong m tập con còn lại.

      Vì m<n+1 nên có ít nhất 2 số (trong n+1 số đó) thuộc cùng 1 tập con và là bội của nhau, đó là 2 số cần tìm.

Như vậy, trong mọi trường hợp, luôn tìm được 2 số là bội của nhau từ n+1 số bất kỳ chọn trong 2n số nguyên dương đầu tiên.

11 tháng 2 2020

Nguồn: https://diendantoanhoc.net/topic/132810-ch%E1%BB%A9ng-minh-r%E1%BA%B1ng-t%E1%BB%AB-n1-s%E1%BB%91-b%E1%BA%A5t-k%C3%AC-trong-2n-s%E1%BB%91-t%E1%BB%B1-nhi%C3%AAn-%C4%91%E1%BA%A7u-ti%C3%AAn-lu%C3%B4n-t%C3%ACm-%C4%91%C6%B0%E1%BB%A3c-hai-s%E1%BB%91-l%C3%A0-b%E1%BB%99i-c/

Mình cx bí bày này nên giải lại cho hiểu kĩ

11 tháng 2 2020

Xét k = 100 ta dễ dàng tìm được một tập hợp n số trong đó không số nào là bội của số kia 

\(\left\{101;102;...;200\right\}\)

Ta chứng minh với k = 101 thì bài toán đúng.

Ta lấy ra ngẫu nhiên 101 số từ tập hợp 200 số đã cho \(\left\{a_1;a_2;...;a_{101}\right\}\)

Ta biểu diễn chúng thành dạng:

\(a_1=2^{x_1}.b_1;a_2=2^{x_2}.b_2;...;a_{101}=2^{x_{101}}.b_{101}\)

với \(x_1;x_2;...;x_{101}\)là các số tự nhiên và \(b_1;b_2;...;b_{101}\)là các số lẻ.

Ta thấy từ 1 đến 199 có 100 số lẻ vì vậy trong 101 số đã cho tồn tại 2 số m > n sao cho bm = bn.Hai số này là bội của nhau.

Vậy giá trị nhỏ nhất của k là 101

11 tháng 2 2020

Nguồn: Câu hỏi của Đỗ Hoàng Phương - Toán lớp 7 | Học trực tuyến

19 tháng 3 2020

xét k=100

dễ dàng tìm được tập số có n số mà trong đó  ko có số nào là bội của số kia \(\left\{101,102,...,200\right\}\)

ta chứng minh k=101 thì bài toán đúng

ta lấy ngẫu nhiên 101 số từ  tập 200 số đã cho

\(\left\{a_1,a_2,...,a_{101}\right\}\)

ta biểu diễn 101 số này thành dạng

\(a_1=2^{x_1}.b_1;a_2=2^{x_2}.b_2\)

.....

\(a_{101}=2^{x_{101}}.b_{101}\)

zới \(x_1,x_2,...,x_{101}\)là các số tự nhiên . \(b_1,b_2,...,b_{101}\)là các số lẻ zà \(1\le b_1,b_2,...,b_{101}\) 

ta thấy rằng từ 1 đến 199 có tất cả 100 số lẻ , zì thế trong 101 số đã chọn tồn tại\(m>n\)sao cho \(b_m=b_n\). hai số này là bội của nhau

zậy k nhỏ nhất là 101 thì thỏa mãn yêu cầu đề bài

19 tháng 3 2020

cảm ơn nha