cmr :nếu lấy ra n+1 số bất kì trong tập {1,2,3....2n} thì trong số lấy ra luôn chọn được hai số này bội cho số kia
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Viết n+1 số đã cho dưới dạng :
a1=2k1b1,a2=2k2b2,...,an+1=2kn+1bn+1a1=2k1b1,a2=2k2b2,...,an+1=2kn+1bn+1
trong đó b1,b2,...,bn+1 là các số lẻ. Ta có 1≤b1,b2,...,bn+1≤2n−11≤b1,b2,...,bn+1≤2n−1
Mà trong khoảng từ 1 đến 2n-1 có n số lẻ nên tồn tại 2 số p khác q sao cho bp=bqbp=bq
Khi đó apap và aqaq có 1 số là bội của số kia
đúng nhớ k cho mình 1 cái nha chúc bn hok tốt
https://www.youtube.com/watch?v=TA-H3IRTRLw
Xem đi;đoạn 16:52 , toi không học dirichlet nên chỉ hiểu sơ sơ :)
Giả sử trong 2n số nguyên dương đầu tiên có đúng m số nguyên tố là p1;p2,...;pm.Dễ chứng minh được rằng m⩽n
Chia 2n số nguyên dương đó thành m+1 tập con (có thể giao nhau) :A0;A1;A2;...;Am, trong đó :
A0={1}
Ai (1⩽i⩽m) gồm pi và tất cả các bội của nó trong 2n số nguyên dương đầu tiên.
Xét 2 trường hợp:
+) m < n
Khi đó m + 1 < n + 1⇒ trong n+1 số bất kỳ (chọn trong 2n số đó) chắc chắn có 2 số thuộc cùng 1 tập con và là bội của nhau, đó là 2 số cần tìm.
+) m = n
+ Nếu trong n+1 số đó có số 1 (thuộc tập Ao) thì đpcm là hiển nhiên.
+ Nếu trong n+1 số đó không có số nào thuộc tập A0 thì chúng chỉ nằm trong m tập con còn lại.
Vì m<n+1 nên có ít nhất 2 số (trong n+1 số đó) thuộc cùng 1 tập con và là bội của nhau, đó là 2 số cần tìm.
Như vậy, trong mọi trường hợp, luôn tìm được 2 số là bội của nhau từ n+1 số bất kỳ chọn trong 2n số nguyên dương đầu tiên.
Nguồn: https://diendantoanhoc.net/topic/132810-ch%E1%BB%A9ng-minh-r%E1%BA%B1ng-t%E1%BB%AB-n1-s%E1%BB%91-b%E1%BA%A5t-k%C3%AC-trong-2n-s%E1%BB%91-t%E1%BB%B1-nhi%C3%AAn-%C4%91%E1%BA%A7u-ti%C3%AAn-lu%C3%B4n-t%C3%ACm-%C4%91%C6%B0%E1%BB%A3c-hai-s%E1%BB%91-l%C3%A0-b%E1%BB%99i-c/
Mình cx bí bày này nên giải lại cho hiểu kĩ
Xét k = 100 ta dễ dàng tìm được một tập hợp n số trong đó không số nào là bội của số kia
\(\left\{101;102;...;200\right\}\)
Ta chứng minh với k = 101 thì bài toán đúng.
Ta lấy ra ngẫu nhiên 101 số từ tập hợp 200 số đã cho \(\left\{a_1;a_2;...;a_{101}\right\}\)
Ta biểu diễn chúng thành dạng:
\(a_1=2^{x_1}.b_1;a_2=2^{x_2}.b_2;...;a_{101}=2^{x_{101}}.b_{101}\)
với \(x_1;x_2;...;x_{101}\)là các số tự nhiên và \(b_1;b_2;...;b_{101}\)là các số lẻ.
Ta thấy từ 1 đến 199 có 100 số lẻ vì vậy trong 101 số đã cho tồn tại 2 số m > n sao cho bm = bn.Hai số này là bội của nhau.
Vậy giá trị nhỏ nhất của k là 101
Nguồn: Câu hỏi của Đỗ Hoàng Phương - Toán lớp 7 | Học trực tuyến
xét k=100
dễ dàng tìm được tập số có n số mà trong đó ko có số nào là bội của số kia \(\left\{101,102,...,200\right\}\)
ta chứng minh k=101 thì bài toán đúng
ta lấy ngẫu nhiên 101 số từ tập 200 số đã cho
\(\left\{a_1,a_2,...,a_{101}\right\}\)
ta biểu diễn 101 số này thành dạng
\(a_1=2^{x_1}.b_1;a_2=2^{x_2}.b_2\)
.....
\(a_{101}=2^{x_{101}}.b_{101}\)
zới \(x_1,x_2,...,x_{101}\)là các số tự nhiên . \(b_1,b_2,...,b_{101}\)là các số lẻ zà \(1\le b_1,b_2,...,b_{101}\)
ta thấy rằng từ 1 đến 199 có tất cả 100 số lẻ , zì thế trong 101 số đã chọn tồn tại\(m>n\)sao cho \(b_m=b_n\). hai số này là bội của nhau
zậy k nhỏ nhất là 101 thì thỏa mãn yêu cầu đề bài