1/ Chứng minh trong tập N chỉ có 3 số 3;5;7 là 3 số lẻ liên tiếp đều là nguyên tố
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì 3,5 ,7đều chia hết cho chính nó và 1 nên chúng là số nguyên tố!
a) Gọi 3 số tự nhiên liên tiếp là a;a+1;a+2 (a\(\in\)N)
Xét 3 trường hợp:
TH1: a chia 3 dư 0 có nghĩa là a chia hết cho 3
TH2: a chia 3 dư 1 ta có:
a=3q+1
a+2=3q+1+2
a+2=3q+3
a+2=3.(q+1)
\(\Rightarrow\)a+2\(⋮\)3
TH3:a chia 3 dư 2 . Ta có:
a= 3q+2
a+1=3q+2+1
a+1=3q+3
a+1=3.(q+1)
\(\Rightarrow\)a+1\(⋮\)3
Vậy trong 3 số tự nhiên liên tiếp , chắc chắn có 1 số chia hết cho 3
b) Gọi 4 số tự nhiên liên tiếp là: a;a+1;a+2;a+3 (a\(\in\)N)
Xét 4 trường hợp:
TH1: a chia 4 dư 0 có nghĩa là a\(⋮\)4
TH2: a:4 dư 1 . Ta có:
a=4q+1
a+3=4q+1+3
a+3=4q+4
a+3=4.(q+1)
\(\Rightarrow\)a+3 \(⋮\)4
TH3: a chia 4 dư 2 . Ta có:
a=4q+2
a+2=4q+2+2
a+2=4q+4
a+2=4.(q+1)
\(\Rightarrow\)a+2\(⋮\)4
TH4: a:4 dư 3 ta có:
a=4q+3
a+1=4q+3+1
a+1=4q+4
a+1=4.(q+1)
\(\Rightarrow\)a+1\(⋮\)4
Vậy chắc chắn trong 4 số tự nhiên liên tiếp sẽ có 1 số chia hết cho 4
(q=thương)
https://www.youtube.com/watch?v=TA-H3IRTRLw
Xem đi;đoạn 16:52 , toi không học dirichlet nên chỉ hiểu sơ sơ :)
Gọi ba số liên tiếp là a;a+1;a+2
TH1: a=3k
=>a+1=3k+1 và a+2=3k+2
=>ĐPCM
TH2: a+1=3k
=>a=3k-1 và a+2=3k+1
=>ĐPCM
TH3: a+2=3k
=>a=3k-2 và a+1=3k-1
=>ĐPCM
giúp tui đi mà
nằm mo à bạn ?