chứng minh rằng trong 3 số chính phương tùy ý luôn tồn tại 2 số mà hiệu của chúng chia hết cho 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của nguyen anh thu - Toán lớp 6 - Học toán với OnlineMath
Bạn tham khảo.
các số dư của mọi stn khi chia cho 50 gồm 0,1,2,3,...,49
xét các số dư trên thành 26 nhóm , ta đc:(0);(1,49);(2,48);...;(25)
với 27 stn tùy ý có ít nhất 27 số dư
xét 27 số này vào 26 nhóm trên thì sẽ có ít nhất 2 số cùng nhóm.
vậy ....
Em kham khảo link này nhé.
Câu hỏi của Hoàng Vũ Trần - Toán lớp 6 - Học toán với OnlineMath
Chúc em hok tốt
xét ba trường hợp :
# trường hợp 1 : 3 số có dạng 6k+1 ( k thuộc n* ) => hiệu của 1 trong 3 số bằng 0 (chia hết cho 12) thỏa mãn nhé bạn hiền
# trường hợp 2 : 3 so co dang 6k+5( k thuộc n* )=> hiệu của 1 trong 3 số bằng 0 (chia hết cho 12) thỏa mãn nhé bạn hiền
# trường hợp 3 : 1 số có dạng 6k+1 và 2 số còn lại có dạng 6k+5 => có 2 số có tổng 6k+1+6k+5=12k+6(loai)
BẠN THỬ KIỂM TRA LẠI ĐỀ BÀI XEM
xét ba trường hợp :
# trường hợp 1 : 3 số có dạng 6k+1 ( k thuộc n* ) => hiệu của 1 trong 3 số bằng 0 (chia hết cho 12) thỏa mãn nhé bạn hiền
# trường hợp 2 : 3 so co dang 6k+5( k thuộc n* )=> hiệu của 1 trong 3 số bằng 0 (chia hết cho 12) thỏa mãn nhé bạn hiền
# trường hợp 3 : 1 số có dạng 6k+1 và 2 số còn lại có dạng 6k+5 => có 2 số có tổng 6k+1+6k+5=12k+6(loai)
Lấy 6 số chia cho 5 và xét phần dư của chúng.
Vì số dư phép chia cho 5 chỉ có thể là 0; 1; 2; 3; 4) nên trong 6 số dư thì chắc chắn có 2 số dư bằng nhau (Nguyên lý Direchle).
Khi đó lấy hai số tương ứng và hiệu của chúng sẽ chia hết cho 5 (vì hai số khi chia cho 5 có cùng số dư thì hiệu sẽ chia hết cho 5).
TA có số chính phương chia 4 có số dư là 0 hoặc 1
có 3 số mà chỉ có 2 số dư, theo nguyên lí dirichlet, ta có tồn tại ít nhất 2 số có cùng số dư khi chia cho 4
=> hiệu 2 số đó sẽ chia hết cho 4
^.^