Cho hình vuông ABCD cạnh a. Trên tia đối của tia CA lấy điểm P sao cho góc APB = 22o33'
a) CM: AP . CP = PB2 - AB2
b) Gọi O là giao điểm 2 đường chéo của hình vuông và H là hình chiếu của O trên PB. Tính BH và HP theo a.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có: Góc BAE + BAD = góc BCF + BCA (=180 độ)
Góc BAD = BCA
⇒ góc BAE = FCB
Xét △BAE và △FCB có:
AB = CF
BAE = FCB
AE = CB
⇒△BAE = △FCB (c.g.c)
⇒EBA = CFB
Mà góc CFB + ABF = 90 độ ⇒EBA + ABF = 90 độ
⇒ góc EBF = 90 độ ⇒BE vuông góc với BF
* Xét ∆ CAB và ∆ EMB, ta có:
CA = EM (gt)
∠ (ACB) = ∠ (MEB) = 90 0
CB = EB (tính chất hình vuông)
Suy ra: ∆ CAB = ∆ EMB (c.g.c)
⇒ AB = MB (1)
Ta có: AK = DK+ DA
CD = CA + AD
Mà CA = DK nên AK = CD
* Xét ∆ CAB và ∆ KIA, ta có:
CA = KI (vì cùng bằng DK)
∠ C = ∠ K = 90 0
CB = AK (vì cùng bằng CD)
Suy ra: ∆ CAB = ∆ KIA (c.g.c)
⇒ AB = AI (2)
Ta có: DH = DK (vì KDHI là hình vuông)
Và EM = DK (gt)
Suy ra: DH = EM
⇒ DH + HE = HE + EM
Hay DE = HM
* Xét ∆ HIM và ∆ EMB, ta có: HI = EM (vì cũng bằng DK)
∠ H = ∠ E = 90 0
HM = EB (vì cùng bằng DE)
Suy ra: ∆ HIM = ∆ EMB (c.g.c)
⇒ IM = MB (3)
Từ (1) , (2) và (3) suy ra: AB = BM = AI = IM
Tứ giác ABMI là hình thoi.
Mặt khác, ta có ∆ ACB = ∆ MEB (chứng minh trên)
⇒ ∠ (CBA) = ∠ (EBM)
Mà ∠ (CBA) + ∠ (ABE) = ∠ (CBE) = 90 0
Suy ra: ∠ (EBM) + ∠ (ABE) = 90 0 hay ∠ (ABM) = 90 0
Vậy tứ giác ABMI là hình vuông.
Chứng minh các tam giác vuông ACB, IKA, IHM, MEB bằng nhau để suy ra AB = IA = IM = MB. Sau đó chứng minh \(\widehat{IAB}=90^0\)
a.Ta có: tam giác ABC là tam giác vuông cân tại A
BH=HC
B=C
Xét tam giác AHB và tam giác AHC ta có:
AH là cạnh chung
BH=HC
B=C
=>Tam giác AHB =tam giác AHC (c-g-c)
b.Theo câu a ta có:
BHA=CHA(2 góc tg ứng)
Mà BHA+CHA=180 độ(kề bù)
=>BHA=CHA=90 độ
=>AH vuông góc với BC