Tính 1.2.3 + 2.3.4 + ..... + 198.199.200
giải đầy đủ ra nhé ai nhanh mình tik
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=1.2.3+2.3.4+...+\left(n-1\right).n.\left(n+1\right)\)
\(4B=1.2.3.4+2.3.4.\left(5-1\right)+...+\left(n-1\right).n.\left(n+1\right)\left[\left(n+2\right)-\left(n-2\right)\right]\)
\(4B=1.2.3.4+2.3.4.5-1.2.3.4+...+\left(n-1\right).n.\left(n+1\right)\left(n+2\right)-\left(n-2\right)\left(n-1\right).n.\left(n+1\right)\)
\(4B=\left(n-1\right).n.\left(n+1\right)\left(n+2\right)\)
\(B=\frac{\left(n-1\right).n.\left(n+1\right)\left(n+2\right)}{4}\)
Tham khảo nhé~
Ta có: \(B=1.2.3+2.3.4+...+\left(n-1\right).n.\left(n+1\right)\)
\(\Leftrightarrow4B=4.\left[1.2.3+2.3.4+...+\left(n-1\right).n.\left(n+1\right)\right]\)
\(\Leftrightarrow4B=1.2.3.4+2.3.4.4+...+\left(n-1\right).n.\left(n+1\right).4\)
\(\Leftrightarrow4B=1.2.3.4+2.3.4\left(5-1\right)+...+\left(n-1\right)n.\left(n+1\right).\left[\left(n+2\right)-\left(n-2\right)\right]\)
\(\Leftrightarrow4B=1.2.3.4+2.3.4.5-1.2.3.4+...+\left(n-1\right).n.\left(n+1\right).\left(n+2\right)-\left(n-2\right).\)\(\left(n-1\right).n.\left(n+1\right)\)
\(\Leftrightarrow4B=\left(n-1\right).n.\left(n+1\right).\left(n+2\right)\)
\(\Leftrightarrow B=\left(n-1\right).n.\left(n+1\right).\left(n+2\right)\div4\)
Vậy \(B=\left(n-1\right).n.\left(n+1\right).\left(n+2\right)\div4\)
3A=1.2.3+2.3.(4-1)+3.4.(5-2)+...+99.100.(101-98)
3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100
3A=98.100.101
A=99.100.101 / 3
A=333300
Mình cho bạn dạng tổng quát nha
1.2+2.3+...+n.(n+1)=n(n+1)(n+2) / 3
3A=1.2.3+2.3.(4-1)+...........+99.100.(101-98)
3A=1.2.3+2.3.4-1.2.3+............+99.100.101-98.99.100
3A=99.100.101
A=99.100.101:3
A=333300
Ta có: B = 1.2 + 2.3 + 3.4 + … + n.(n + 1)
=> 3A = 1.2.(3-0) + 2.3.(4-1) + .... + n.(n+1).(n+2 - n+1)
=> 3A = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + .... + n.(n+1).(n+2)
=> 3A = n.(n+1).(n+2)
= > A =
2Q=\(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+.........+\frac{1}{9.10}-\frac{1}{10.11}\)
2Q=\(\frac{1}{1.2}-\frac{1}{10.11}\)
2Q=\(\frac{1}{2}-\frac{1}{110}\)
2Q=\(\frac{55}{110}-\frac{1}{110}\)
2Q=\(\frac{54}{110}\)
Q=\(\frac{54}{110}:2\)
Q=\(\frac{27}{110}\)
Ta có : A = 1 + 6 + 6^2 + .... + 6^9 .
= 1 + 6 . ( 1 + 6 + ..... + 6^8 ) .
Do đó A chia cho 6 dư 1
Từ giả thiết suy ra:
2E=\(\frac{2}{1.2.3}+\frac{2}{2.3.4}+..+\frac{2}{86.87.88}\)
2E=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{86.87}+\frac{1}{87.88}\)
2E=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{86}-\frac{1}{87}+\frac{1}{87}-\frac{1}{88}\)
2E=\(1-\frac{1}{88}\)
2E=\(\frac{87}{88}\)
E=\(\frac{87}{176}\)
Vậy E=\(\frac{87}{176}\)
A = 1 . 2 . 3 + 2 . 3 . 4 + ......... + 38 .39 . 40
\(\Rightarrow4A=1.2.3.4+2.3.4.4+......+38.39.40.4\)
\(\Rightarrow4A=1.2.3.\left(4-0\right)+2.3.4.\left(5-1\right)+.......+38.39.40.\left(41-37\right)\)
\(\Rightarrow4A=1.2.3.4+1.2.3.0+2.3.4.5-1.2.3.4+....+38.39.40.41-38.39.40.37\)
\(\Rightarrow4A=38.39.40.41\)
\(\Rightarrow A=\frac{38.39.40.41}{4}\)
\(\Rightarrow A=38.39.10.41\)
\(\Rightarrow A=607620\)
Vậy \(A=607620\)
ta có S = 1.2.3 + 2.3.4 + ..... + 198.199.200
4s = 1.2.3.4 + 2.3.4.(5-1)+....+198.199.200.(201-197)
= 1.2.3.4+2.3.4.5-1.2.3.4+...+198.199.200.201-197.198.199.200
= 198.199.200.201
=> s = \(\frac{198.199.200.201}{4}=198.199.50.201\)