Cho tam giác ABC:A= 90°,trên tia đối của tia CA, CB lần lượt lấy M,N:AC=CM,BC=CN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔCAB và ΔCNM có
CA=CN
\(\widehat{ACB}=\widehat{NCM}\)(hai góc đối đỉnh)
CB=CM
Do đó: ΔCAB=ΔCNM
=>\(\widehat{CAB}=\widehat{CNM}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//MN
b:
Ta có: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC
=>HB=HC
Xét ΔHAC vuông tại H và ΔKNC vuông tại K có
AC=NC
\(\widehat{HCA}=\widehat{KCN}\)(hai góc đối đỉnh)
Do đó: ΔHAC=ΔKNC
=>HC=KC
mà HB=HC
nên HB=KC
Xét ΔABH vuông tại H và ΔNCK vuông tại K có
BH=CK
\(\widehat{ABH}=\widehat{NCK}\)\(\left(=\widehat{ACB}\right)\)
Do đó: ΔABH=ΔNCK
Tham Khảo:
a) Xét ΔABC và ΔMNC, ta có:
BC=NC (gt)
ˆBAC=ˆNCM (đối đỉnh)
AC=CM (gt)
⇒ΔABC=ΔMNC (c-g-c)
b) Vì ΔABC=ΔMNC nên ˆBAC=ˆCMN=900 ( 2 góc tương ứng)
hay AM⊥MN
c) Ta có: A,C,M thẳng hàng nên ˆACE+ˆECM=1800 (kề bù)
mà ˆACE=ˆOCM ( đối đỉnh)
⇒ˆOCM+ˆECM=1800
⇒ ba điểm E,C,O thẳng hàng
hay CE đi qua trung điểm của đoạn thẳng MN
từ đề suy ra được : MN//AB
Áp dụng theo đl ta-lét thì:
\(\dfrac{MN}{AB}=\dfrac{NC}{CA}\)
mà CN=CA suy ra:
\(\dfrac{CN}{CA}=1\)
\(mà\dfrac{MN}{AB}=\dfrac{CN}{CA};\Rightarrow\dfrac{MN}{AB}=1\)
<=> MN = AB hay AB = NM( đpcm)
a, Xét tam giác ABC và MNC có :
AC= CM (gt)
CN=Cb (gt)
Góc ACB= góc NCM ( đối đỉnh)
=> tam giác ABC = tam giác MNC ( c-g-c)
Xét tứ giác ABDE có
C là trung điểm của AD
C là trung điểm của BE
Do đó: ABDE là hình bình hành
Suy ra: BD//AE
Xét ΔMBC và ΔNEC có
\(\widehat{MBC}=\widehat{NEC}\)
BC=EC
\(\widehat{MCB}=\widehat{NCE}\)
Do đó: ΔMBC=ΔNEC
Suy ra: CM=CN
hay C là trung điểm của MN
\(a,\) \(\left\{{}\begin{matrix}AD=BD\\CD=DE\\\widehat{ADC}=\widehat{EDB}\left(đđ\right)\end{matrix}\right.\Rightarrow\Delta BED=\Delta ACD\left(c.g.c\right)\)
\(b,\left\{{}\begin{matrix}AM=MN\\MB=MC\\\widehat{AMB}=\widehat{CMN}\left(đđ\right)\end{matrix}\right.\Rightarrow\Delta AMB=\Delta NMC\left(c.g.c\right)\\ \Rightarrow\widehat{MCN}=\widehat{MBA}\)
Mà 2 góc này ở vị trí so le trong nên \(CN//AB\)
\(c,\Delta BED=\Delta ACD\Rightarrow\widehat{CAD}=\widehat{EBD}=90^0\\ \Rightarrow BD\bot BE\left(1\right)\)
\(\left\{{}\begin{matrix}AM=MN\\MB=MC\\\widehat{AMC}=\widehat{BMN}\left(đđ\right)\end{matrix}\right.\Rightarrow\Delta AMC=\Delta NMB\left(c.g.c\right)\\ \Rightarrow\widehat{MCA}=\widehat{MBN}\)
Mà 2 góc này ở vị trí so le trong nên \(AC\text{//}NB\Rightarrow NB\bot AB\left(2\right)\)
Từ \(\left(1\right)\left(2\right)\Rightarrow NB\equiv BE\) hay E,B,N thẳng hàng
Câu hỏi???
Ai k sai cho mk lí do