Phân tích thành phân tử:
a) x^2-3
b) x^2-6
c) x^2+2√3x+3
d) x^2-2√5x+5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vô đây xem: bài 1:phân tích đa thức thành nhân tửa)7x^3y-14x^2y+7xy^3b)3x^2-3xy-5x+5yc)x^2+7x+12giúp mình với - Hoc24
a: =(x-z)(y+8)
b; =x^2-2x-3x+6
=(x-2)(x-3)
c: =x^4+10x^2-x^2-10
=(x^2+10)(x^2-1)
=(x^2+10)(x-1)(x+1)
\(a,=2x^2-6x+9x-27=\left(x-3\right)\left(2x+9\right)\\ b,=x^2-7x+\dfrac{49}{4}-\dfrac{73}{4}\\ =\left(x-\dfrac{7}{2}\right)^2-\dfrac{73}{4}=\left(x-\dfrac{7}{2}-\dfrac{\sqrt{73}}{2}\right)\left(x-\dfrac{7}{2}+\dfrac{\sqrt{73}}{2}\right)\\ c,=x^2+3x+4x+12=\left(x+3\right)\left(x+4\right)\\ d,=x^2-2x-8x+16=\left(x-2\right)\left(x-8\right)\\ e,=x^2-3x-5x+15=\left(x-3\right)\left(x-5\right)\\ g,=x^2+2x+4x+8=\left(x+2\right)\left(x+4\right)\)
\(5x^2+10xy=5x\left(x+2y\right)\)
\(x^2+xy-3x-3y=x\left(x+y\right)-3\left(x+y\right)=\left(x-3\right)\left(x+y\right)\)
\(x^2+2x+1-y^2=\left(x+1\right)^2-y^2=\left(x+1-y\right)\left(x+1+y\right)\)
\(x^2-7x+6=x^2-x-6x+6=x\left(x-1\right)-6\left(x-1\right)=\left(x-1\right)\left(x-6\right)\)
\(a,2x-2\sqrt{x}=2\sqrt{x}\left(\sqrt{x}-1\right)\\ b,x-\sqrt{x}-6=x-3\sqrt{x}+2\sqrt{x}-6\\ =\sqrt{x}\left(\sqrt{x}-3\right)+2\left(\sqrt{x}-3\right)=\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)\\ c,4x-4\sqrt{x}+1=\left(2\sqrt{x}\right)^2-2.2\sqrt{x}.1+1^2=\left(2\sqrt{x}+1\right)^2\)
a) \(2x-2\sqrt{x}=2\sqrt{x}\left(\sqrt{x}-1\right)\)
b) \(x-\sqrt{x}-6=\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)\)
c) \(4x-4\sqrt{x}+1=\left(2\sqrt{x}-1\right)^2\)
\(a,=\left(3x-5\right)\left(3x+3\right)=3\left(x+1\right)\left(3x-5\right)\\ b,=\left(5x-4-7x\right)\left(5x-4+7x\right)=\left(-2x-4\right)\left(12x-4\right)\\ =-8\left(x+2\right)\left(x-3\right)\\ c,=\left(2x+5-x+9\right)\left(2x+5+x-9\right)\\ =\left(x+14\right)\left(3x-4\right)\\ d,=\left(3x+1-2x+4\right)\left(3x+1+2x-4\right)\\ =\left(x+5\right)\left(5x-3\right)\\ e,=\left(6x+9-2x-2\right)\left(6x+9+2x+2\right)\\ =\left(4x+7\right)\left(8x+11\right)\\ f,=\left(2bc-b^2-c^2+a^2\right)\left(2bc+b^2+c^2-a^2\right)\\ =\left[a^2-\left(b-c\right)^2\right]\left[\left(b+c\right)^2-a^2\right]\\ =\left(a-b+c\right)\left(a+b-c\right)\left(b+c-a\right)\left(b+c+a\right)\\ g,=\left(ax+by-ay-bx\right)\left(ax+by+ay+bx\right)\\ =\left(a-b\right)\left(x-y\right)\left(a+b\right)\left(x+y\right)\)
\(h,=\left(a^2+b^2-5-2ab-4\right)\left(a^2+b^2-5+2ab+4\right)\\ =\left[\left(a-b\right)^2-9\right]\left[\left(a+b\right)^2-1\right]\\ =\left(a-b-3\right)\left(a-b+3\right)\left(a+b-1\right)\left(a+b+1\right)\)
a: \(\left(3x-1\right)^2-16\)
\(=\left(3x-1-4\right)\left(3x-1+4\right)\)
\(=\left(3x+3\right)\left(3x-5\right)\)
\(=3\left(x+1\right)\left(3x-5\right)\)
b: \(\left(5x-4\right)^2-49x^2\)
\(=\left(5x-4-7x\right)\left(5x-4+7x\right)\)
\(=\left(-2x-4\right)\left(12x-4\right)\)
\(=-8\left(x+2\right)\left(3x-1\right)\)
a.
\(=\left(x+1\right)^3-\left(3z\right)^3\)
\(=\left(x+1+3z\right)\left[\left(x+1\right)^2+3z\left(x+1\right)+9z^2\right]\)
\(=\left(x+3z+1\right)\left(x^2+2x+1+3zx+3z+9z^2\right)\)
b.
\(=\left(x-y\right)^2-z\left(x-y\right)\)
\(=\left(x-y\right)\left(x-y-z\right)\)
c.
\(=x^4-1+4x^2-4\)
\(=\left(x^2-1\right)\left(x^2+1\right)+4\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(x^2+5\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x^2+5\right)\)
a) Ta có: \(x^3+3x^2+3x+1-27z^3\)
\(=\left(x+1\right)^3-\left(3z\right)^3\)
\(=\left(x+1-3z\right)\left(x^2+2x+1+3xz+3z+9z^2\right)\)
b) Ta có: \(x^2-2xy+y^2-zx+yz\)
\(=\left(x-y\right)^2-z\left(x-y\right)\)
\(=\left(x-y\right)\left(x-y-z\right)\)
c) Ta có: \(x^4+4x^2-5\)
\(=x^4+4x^2+4-9\)
\(=\left(x^2+2\right)^2-3^2\)
\(=\left(x^2-1\right)\left(x^2+5\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x^2+5\right)\)
\(x^2-3=\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)\)
\(x^2-6=\left(x-\sqrt{6}\right)\left(x+\sqrt{6}\right)\)
\(x^2+2\sqrt{3}x+3=x^2+2\sqrt{3}.x+\sqrt{3}^2=\left(x+\sqrt{3}\right)^2\)
\(x^2-2\sqrt{5}x+5=x^2-2\sqrt{5}x+\sqrt{5}^2=\left(x-\sqrt{5}\right)^2\)