CMR với mọi số nguyên tố > 3 thì :
p2 - 1 \(⋮\)24
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(p^2-1=\left(p-1\right)\left(p+1\right)\)
Vì p là số nguyên tố, p > 3 nên p không chia hết cho 3
Xét tích ba số nguyên liên tiếp : (p-1).p.(p+1) . Số này chia hết cho 3 vì một trong ba số ắt tìm được một số chia hết cho 3. Mà p không chia hết cho 3
=> (p-1)(p+1) = p2-1 chia hết cho 3 (1)
Ta chứng minh bài toán phụ : Với mọi số nguyên tố lớn hơn 3 đều viết được dưới dạng \(6m+1\) hoặc \(6m-1\)
Thật vậy , mọi số nguyên đều viết được dưới dạng \(6m\pm1,6m\pm2,6m\pm3\)
Mọi số nguyên tố lớn hơn 3 thì không chia hết cho 2 và 3 nên chúng chỉ có dạng \(6m\pm1\)
Xét với số nguyên tố \(p=6m\pm1\Rightarrow p^2-1=36m^2\pm12m=12m\left(3m\pm1\right)⋮8\) (2)
Từ (1) và (2) suy ra p chia hết cho 3 và 8 , mà (3,8) = 1
=> p chia hết cho 24
+ Do p nguyên tố > 3 => p không chia hết cho 3
=> p2 không chia hết cho 3 => p2 chia 3 dư 1
=> \(p^2-1⋮3\left(1\right)\)
+ Do p nguyên tố > 3 => p lẻ => p2 lẻ
=> p2 chia 8 dư 1
=> \(p^2-1⋮8\left(2\right)\)
Từ (1) và (2), do (3;8)=1 => \(p^2-1⋮24\left(đpcm\right)\)
vì n là số nguyên tố ,n>3 nên n có dạng: 3k+1 hoặc 3k+2
với n=3k+1 thì
\(\left(n-1\right)\left(n+1\right)=\)\(\left(3k +1-1\right)\left(3k+1+1\right)=\)\(3k\left(3k+2\right)⋮3\)(1)
với n=3k+2 thì
\(\left(n-1\right)\left(n+1\right)=\)\(\left(3k+2+1\right)\left(3k+2-1\right)=\)\(\left(3k+3\right)\left(3k+1\right)=\)\(3\left(k+1\right)\left(3k+1\right)⋮3\)(2)
vì n là số nguyên tố lớn hơn 3 nên n là số lẻ nên n có dạng 2m+1
n=2m+1 thì
\(\left(n+1\right)\left(n-1\right)=\left(2m+1+1\right)\left(2m+1-1\right)\)\(=\left(2m+2\right)2m=2.2m\left(m+1\right)\)\(4m\left(m+1\right)⋮8\)(vì m(m+1) là hai sô tự nhiên liên tiếp nên tồn tại một số chia hết cho 2 nhân 4 nữa là chia hết cho 8) (3)
mà (8,3)=1
từ (1),(2),(3) được đpcm
vì n>3 nên n có dạng n=3k+1 hoặc n=3k+2
với n=3k+1 thì (n+1)(n-1)=(3k+2)3k chia hết cho 3
với n=3k+2 thì (n+1)(n-1)=(3k+3)(3k+1) chia hết cho 3
vậy với mọi số nguyên tố n>3 thì (n+1)(n-1) chia hết cho 3 (1)
mặt khác vì n>3 nên n là số lẻ =>n+1; n-1 là 2 số chẵn liên tiếp
=>trong hai số n+1; n-1 tồn tại một số là bội của 4
=> (n+1)(n-1) chia hết cho 8 (2)
từ (1) và (2) => (n+1)(n-1) chia hết cho 24 với mọi số nguyên tố n>3
p2 − 1 = (p + 1) (p − 1)
trước hết p là số lẻ nêm p‐1 và p+1 là 2 số chẵn liên tiếp nên chia hết cho 2*4=8
mặt khác p>3 nên p‐1 hoặc p+1 chia hết cho 3
﴾3;8﴿=1 nên suy ra đpcm
không thể chứng mình được đâu bạn nhé
Ta thấy 4 chia hết cho 2 nên nếu n là số chẵn thì n^4 +4 không thể là số nguyên tố rồi
Còn n là số lẻ thì rất ít khả năng 4^n + 4 là số nguyên tố
Bạn nên xem lại đề bài nhé
Ta có:
p(p^2-1)=p(p+1)(p-1) chia hết cho 6 với mọi p dương (do trong 3 số có ít nhất 1 số chia hết cho 2, 1 số chia hết cho 3)
Vì p là số nguyên tố lớn hơn 3 nên p là số lẻ
=> p+1 và p -1 đều chẵn
=> p(p-1)(p+1) chia hết cho 4
Vì p(p^2-1) chia hết cho 6 và 4 nên cũng chia hết cho 24
\(p^2-1=p^2+p-P-1=\left(p^2+p\right)-p+1-\left(p+1\right)=\left(p-1.p+1\right)\)
P là số nguyên tố =>3= > p là số lẻ
số chẵn liên tiếp => (p-1)(p+1) chia hết cho 8
P là số nguyên tố >3=> P = 3k+1:3k+2 với số P=3 k + 1 => ( p + 1) = 3k (p+1)chia hết cho 3 (1)
với p =3k + 2 =>(p-1)(p+1)= (p-10(3k+2+1)= (p-1)(3k+1) cjia hết cho3(2)
từ (1):(2) = p2 -1 chia hết cho 3:8
mà (3:8)=1=>p2 - 1 chia hết cho 4
p ko chia hét cho 3 nên p chia 3 dư 1 =>p^2-1 chia hết cho 3
p^2 chia 8 dư 0,1,4.Nhưng p nguyên tố nên p^2 chia 8 dư 1 =>p^2-1 chia hết cho 8
mà (3;8)=1 nên ta cố dpcm